2023 in archosaur paleontology
This article records new taxa of every kind of fossil archosaur that are scheduled to be described during 2023, as well as other significant discoveries and events related to the paleontology of archosaurs that will be published in 2023.
| |||
---|---|---|---|
+... |
Pseudosuchians
New pseudosuchian taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Sennikov |
Early Triassic |
A member of the family Rauisuchidae. The type species is S. basileus. Published online in 2023, but the issue date is listed as December 2022.[1] |
||||
Gen. et sp. nov |
Wilberg et al. |
Early Jurassic (Pliensbachian) |
An early diverging thalattosuchian. |
|||||
Aetosaur research
- A study on the humeral histology in specimens of Aetosaurus ferratus from the Kaltental site (Lower Stubensandstein, Germany) is published by Teschner et al. (2023), who interpret the studied specimens as juveniles, and interpret the accumulation of small-sized specimens at Kaltental as possible evidence of gregarious behavior in juveniles of A. ferratus.[3]
Crocodylomorph research
- Evidence from the osteological correlates of the trigeminal nerve in extant and fossil taxa, interpreted as indicative of an increase in sensory abilities in Early Jurassic crocodylomorphs, preceding their transitions to a semiaquatic habitat, is presented by Lessner et al. (2023).[4]
- New specimen of Hsisosuchus of uncertain specific assignment, providing new information on the shape and arrangement of the osteoderms in the ventral trunk shield of members of this genus, is described from the Upper Jurassic of Yunnan (China) by Wu et al. (2023).[5]
- A study on possible effects of climate, body size and diet on the survival of terrestrial notosuchians during the Cretaceous–Paleogene extinction event is published by Aubier et al. (2023), who find evidence of increase in body size during the Late Cretaceous which may be related to the shift from omnivorous to carnivorous diet, but find the studied data insufficient to list definitive reasons for the survival of sebecids into the Cenozoic.[6]
- Description of new fossil material of itasuchid crocodyliforms from the Upper Cretaceous Bauru Group (Brazil) is published by Pinheiro et al. (2023), who also confirm the monophyly of Itasuchidae with some variation in its content, and find the South American itasuchid species to occupy a crocodyliform morphospace, possibly indicating distinct niche occupations.[7]
- A new mandibular ramus referred to Hamadasuchus cf. reboulli is described by Pochat-Cottilloux et al., who propose an emmended diagnosis of the taxon and argue that only three specimens are actually referrable to this species. They further discuss multiple anatomical characters of the mandible that they suggest represent intraspecific or ontogenetic differences and are not diagnostically valuable. As a consequence, it is suggested that Antaeusuchus may be a species of Hamadasuchus.[8]
- A study on the neuroanatomy and phylogenetic affinities of Portugalosuchus azenhae is published by Puértolas-Pascual et al. (2023), who recover Portugalosuchus as a member of Gavialoidea most closely related to Thoracosaurus neocesariensis.[9]
- A collection of isolated gavialoid teeth is reported from the shallow marine deposits of Eocene Turnu Roșu (Romania) by Venczel et al. (2023), who recognize a minimum of five morphotypes.[10]
- Burke & Mannion (2023) present a reconstruction of the neuroanatomy and neurosensory apparatus of "Tomistoma" dowsoni, providing evidence that this gavialoid displayed an intermediate morphology between those of extant gharials and false gharials.[11]
- A collection of eighteen isolated neosuchian teeth as well as a single isolated crocodyliform osteoderm are reported from the Berriasian–Valanginian Feliz Deserto Formation (Brazil) by Lacerda et al. (2023), who recognize a minimum of three morphotypes among the teeth.[12]
Non-avian dinosaurs
New dinosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Chucarosaurus[13] | Gen. et sp. nov | In press | Agnolin et al. | Late Cretaceous (Cenomanian-Turonian) | Huincul Formation | ![]() |
A colossosaurian titanosaur. The type species is C. diripienda. | |
Gen. et sp. nov |
In press |
Prieto-Márquez & Wagner |
Late Cretaceous (Campanian) |
A basally branching hadrosaurid. Genus includes new species M. deckerti. Announced in 2022; the final article version will be published in 2023. |
||||
General non-avian dinosaur research
- Cullen et al. (2023) reevaluate evidence for anomalously positive stable carbon isotope compositions of dinosaur bioapatite, report that the studied anomaly is present in the carbon isotope compositions of bioapatite in tooth enamel of not only dinosaurs but also mammals and crocodilians and in scale ganoine of gars from the "Rainy Day Site" in the Campanian Oldman Formation (Alberta, Canada) but is absent in extant vertebrates from the near-analogue modern ecosystem in the Atchafalaya Basin (Louisiana, United States), and interpret their findings as indicating that the studied anomaly is not the result of a unique dietary physiology of dinosaurs.[15]
- Dinosaur eggshell fragments with preserved eggshell membranes are reported from the Late Jurassic Brushy Basin Member of the Morrison Formation (Utah, United States) by Lazer et al. (2023).[16]
- Navarro-Lorbés et al. (2023) describe tracks produced by an undetermined bipedal non-avian dinosaur from the Lower Cretaceous Cameros Basin (Spain), interpreted as likely produced during swimming, and providing information on the swimming behaviour of the trackmaker.[17]
- Description of four dinosaur teeth assignable to three different families (Tyrannosauroidea, Titanosauriformes, and Hadrosauroidea) from the Creataceous Sunjiawan Formation (China) is published by Yin et al. (2023), representing the first record of a theropod from the formation, as well as representing potentially two new taxa, as the hadrosauroid teeth are distinct from Shuangmiaosaurus.[18]
Saurischian research
- A tracksite of dinosaur footprints is described from the Middle Jurassic Xietan Formation (Hubei, China) by Xing et al. (2023), who interpret the tracks as belonging to small sauropods (similar to Brontopodus) and probable theropods.[19]
Theropod research
- A study on the developmental strategies underlying the evolution of body size of non-avialan theropods is published by D'Emic et al. (2023), who report that changes in the rate and duration of growth contributed nearly equally to the body size changes.[20]
- A study on the relationship between the body size of theropods, the area of muscles important for their balance and locomotion, and their capacity for agility is published by Henderson (2023), who argues that theropod body plan had an upper size limit based on a minimum acceleration threshold.[21]
- Cullen et al. (2023) use multiple lines of evidence, including histology of teeth and morphological comparisons, to evaluate proposed theropod facial reconstructions, and argue that non-avian theropods most likely had lips that covered their teeth.[22]
- Peng et al. (2023) describe abundant tracks from the Upper Triassic Tianquan track site (Xujiahe Formation; Ya'an, western Sichuan Basin, China), interpreted as produced by small theropods and representing one of the earliest record of dinosaurs from the eastern Tethys realm.[23]
- New specimen of Sinosaurus triassicus, including a complete skull and 11 cervical vertebrae, is described by Zhang, Wang & You (2023).[24]
- Sharma, Hendrickx & Singh (2023) describe dental material of a non-coelurosaur averostran theropod from the Bathonian Fort Member of the Jaisalmer Formation (India), providing evidence of the presence of at least one taxon of a medium to large-bodied theropod on the Tethyan coast of India during the Middle Jurassic.[25]
- A collection of seven isolated spinosaurid teeth as well as a single preungual pedal phalanx of an indetermined theropod are reported from the Berriasian–Valanginian Feliz Deserto Formation (Brazil) by Lacerda et al. (2023).[12]
- Barker et al. (2023) reconstruct the endocasts of the baryonychine spinosaurids Baryonyx walkeri and Ceratosuchops inferodios, finding their morphology to be similar to non-maniraptoriform theropods despite their highly modified skulls.[26]
- Description of a pathological tooth of Spinosaurus from the Late Cretaceous Ifezouane Formation (Morocco) is published by Smith and Martill (2023), representing the first record of external dental pathology in a spinosaurine spinosaurid.[27]
- Reconstruction of the musculature of the pectoral girdle and forelimbs in megaraptoran theropods is presented by Aranciaga Rolando et al. (2023).[28]
- A pathological third metatarsal of Phuwiangvenator, indicating that the bone experienced a greenstick fracture and healed before the animal's death, is described from the Lower Cretaceous Sao Khua Formation (Khon Kaen, Thailand) by Samathi et al. (2023).[29]
- A study estimating the number of telencephalic neurons in theropod dinosaurs is published by Herculano-Houzel (2023), who argues that Allosaurus and Tyrannosaurus are endotherms with baboon- and monkey-like numbers of neurons;[30] however, this study has been criticized.[31]
- The study suggesting that carnosaurs like Allosaurus were primarily scavengers that fed on sauropod carcasses, originally published by Pahl and Ruedas (2021)[32] is criticized by Kane et al. (2023)[33] but later defended by Pahl and Ruehdas (2023).[34]
- Evidence of preservation of elements associated with bone remodeling and redeposition (sulfur, calcium, zinc) in a specimen of Tyrannosaurus rex, interpreted as indicative of preservation of original endogenous chemistry in the studied specimen, is presented by Anné et al. (2023).[35]
- A study on the formation and function of the enlarged unguals of alvarezsauroid and therizinosaur theropods is published by Qin et al. (2023), who interpret their findings as indicative of the evolution of digging adaptions in late-diverging alvarezsauroids, find the unguals of early-branching therizinosaurs to perform well in piercing and pulling, and interpret the enlarged unguals of Therizinosaurus as not adapted to functions that required considerable stress-bearing.[36]
- Two ornithomimid pedal phalanges are described from the Late Cretaceous Fox Hills Formation (South Dakota, United States) by Chamberlain, Knoll, and Sertich (2023), representing the first dinosaur skeletal material from the formation.[37]
- Smith & Gillette (2023) reconstruct soft tissues of the hindlimbs and likely posture of Nothronychus graffami.[38]
- A partial left tibia and articulated proximal tarsals, likely belonging to an indeterminate velociraptorine, are described from the Upper Cretaceous Lo Hueco fossil site (Cuenca, Spain) by Malafaia et al. (2023), who also review the European theropods of the Late Cretaceous.[39]
- Averianov & Lopatin (2023) describe new fossil material of Kansaignathus sogdianus from the Santonian Ialovachsk Formation (Tajikistan), and confirm the phylogenetic placement of K. sogdianus as the basalmost Asiatic velociraptorine.[40]
- Evidence from eggshells of Troodon, interpreted as indicative of endothermic physiology but also of reptile-like eggshell mineralization proces, is presented by Tagliavento et al. (2023).[41]
Sauropodomorph research
- Lockley et al. (2023) evaluate a number of trackways assigned to basal saurischians, including those belonging to the ichnogenera Otozoum, Pseudotetrasauropus, Evazoum, and Kalosauropus, and examine their implications on the gait of "prosauropods".[42]
- Aureliano et al. (2023) provide evidence of the presence of an invasive air sac system in Macrocollum itaquii.[43]
- Description of new eusauropod fossil material from the Middle Jurassic Dongdaqiao Formation (China) is published by Wei et al. (2023), who interpret these findings as showing that gigantic sauropods were more widespread than previously known during the Middle Jurassic.[44]
- A juvenile sauropod specimen, most closely resembling early-diverging eusauropods from the Middle Jurassic but sharing some derived features with the Late Jurassic mamenchisaurids and neosauropods, is described from the Middle Jurassic Dongdaqiao Formation (East Tibet, China) by An et al. (2023).[45]
- The holotype of Mamenchisaurus sinocanadorum is redescribed by Moore et al. (2023), who also interpret Bellusaurus and Daanosaurus as juvenile mamenchisaurids.[46]
- Cervical vertebra representing the first record of a titanosauriform sauropod from the Lower Cretaceous Kanmon Group (Japan) is described by Tatehata, Mukunoki & Tanoue (2023).[47]
- Dhiman et al. (2023) report the discovery of 92 titanosaur egg clutches from the Upper Cretaceous Lameta Formation (Madhya Pradesh, India), including three types of clutches and assigned to six oospecies, interpret their findings as suggestive of higher diversity of titanosaur taxa from the Lameta Formation than indicated by body fossils, and evaluate the implications of the studied egg clutches for the knowledge of the reproductive biology of titanosaurs.[48]
Ornithischian research
- A study on the biomechanical properties of the skulls of Heterodontosaurus tucki, Lesothosaurus diagnosticus, Scelidosaurus harrisonii, Hypsilophodon foxii and Psittacosaurus lujiatunensis is published by Button et al. (2023), who interpret their findings as indicative of limited functional convergence among studied taxa, which achieved comparable performance of the feeding apparatus through different adaptations.[49]
- A study on the evolution of forelimb muscle mechanics and function in ornithischian dinosaurs is published by Dempsey et al. (2023), who interpret their findings as indicating that thyreophorans, ornithopods and ceratopsians evolved quadrupedality through different patterns of rearrangement of forelimb musculature.[50]
- Review of the fossil record of ornithischian dinosaurs from Southeast Asia and southern China is published by Manitkoon et al. (2023)[51]
- Surmik et al. (2023) study ossified tendons of specimens of Pinacosaurus grangeri, Edmontosaurus regalis/"Ugrunaaluk kuukpikensis" and Homalocephale calathocercos, reporting the presence of collagenous fibre bundles and likely fibril bundles, blood vessels and associated cells in some of the studied samples, and argue that ossified tendons can be a source of molecular preservation in dinosaurs.[52]
- Description of the skull osteology of Manidens condorensis is published by Becerra et al. (2023).[53]
Thyreophoran research
- A study on the use of quadrapediality in Scutellosaurus lawleri, and on its implications for locomotor behavior evolution in dinosaurs, is published by Anderson et al. (2023), who interpret Scutellosaurus as mainly being a biped, and suggest quadrapediality was used during specific activities.[54]
- Galton (2023) describes a right sternal bone of a specimen of Stegosaurus from the Carnegie Quarry at Dinosaur National Monument (Morrison Formation; Utah, United States) and reevaluates three putative sternal bones from Como Bluff (Wyoming, United States) described by Gilmore (1914),[55] arguing that they are neither sternal bones nor fossils of Stegosaurus.[56]
- Description of nodosaurid osteoderms from the Late Cretaceous Snow Hill Island Formation (Antarctica) is published by Brum et al. (2023), who suggest that osteoderm structure may have helped nodosaurids colonize high-latitude environments more easily.[57]
- Yoshida, Kobayashi & Norell (2023) report the discovery of fossilized larynx of a specimen of Pinacosaurus grangeri from the Campanian of Ukhaa Tolgod (Mongolia), and interpret its anatomy as indicating that Pinacosaurus might have been capable of vocalization and, like extant birds, might have possessed a non-laryngeal vocal source and used larynx as a sound modifier.[58]
- Tumanova et al. (2023) describe anomalies within the airway and sinuses of a skull of a specimen of Tarchia, which were only detected while CT scanning the specimen, and which might have been caused by infection and/or trauma.[59]
Cerapod research
- Redescription of Cumnoria prestwichii is published by Maidment et al. (2023), who recover Cumnoria as a non-ankylopollexian iguanodontian, and consider it to be distinct from Camptosaurus.[60]
- García-Cobeña, Cobosa & Verdú (2023) describe bone and trace fossils of styracosternan ornithopods from the Lower Cretaceous El Castellar Formation and Camarillas Formation (Spain), including manus-pes track set from the Camarillas Formation indicative of quadrupedal locomotion, assigned to the ichnogenus Caririchnium and produced by large styracosternans related to Iguanodon.[61]
- A study on the cranial suture interdigitation in Hadrosaurids, using data gathered from Gryposaurus and Corythosaurus is published by Dudgeon and Evans (2023) who find that suture interdigitation increased across Hadrosaurid ontogeny, that Lambeosaurines had higher suture interdigitation than other Iguanodontians, and that increased suture complexity coincided with Lambeosaurine crest evolution.[62]
- A study on the anatomy of the holotype specimen of Gravitholus albertae is published by Dyer, Powers & Currie (2023), who interpret both Gravitholus albertae and Hanssuesia sternbergi as likely junior synonyms of Stegoceras validum.[63]
- A study on the endocranial morphology of Liaoceratops yanzigouensis is published by Yang et al. (2023), who find that the brain, olfactory bulb and inner ear of Liaoceratops more closely resemble those observed in Psittacosaurus than those in more derived ceratopsians.[64]
- A review of the cranial evolution in Ceratopsia is published by Nabavizadeh (2023).[65]
Birds
New bird taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Anachronornis[66] | Gen. et sp. nov. | Valid | Houde, Dickson & Camarena | Thanetian | Willwood Formation | ![]() ( ![]() |
A basal anseriform of the new family Anachronornithidae. The type species is A. anhimops. | |
Sp. nov |
Valid |
Mayr & Kitchener |
Eocene |
A member of the family Vastanavidae. |
||||
Castignovolucris[68] |
Gen. et sp. nov |
Buffetaut, Angst & Tong |
Late Cretaceous (probably late Campanian) |
A member of Enantiornithes. The type species is C. sebei. |
||||
Gen. et sp. nov |
Valid |
Li et al. |
A non-ornithothoracine pygostylian. The type species is C. zhui. |
|||||
Danielsavis[66] | Gen. et sp. nov. | Valid | Houde, Dickson & Camarena | Ypresian | London Clay Formation | ![]() |
A basal anseriform. The type species is D. nazensis. | |
Dynatoaetus[70] | Gen. et sp. nov. | Valid | Mather et al. | Chibanian | Mairs Cave | ![]() |
An Accipitrid, the type species is D. gaffae. | ![]() |
Sp. nov |
Valid |
Ksepka et al. |
Paleocene (Teurian) |
An early penguin. |
||||
Sp. nov |
Valid |
Tennyson & Salvador |
Pliocene (Waipipian) |
A member of the genus Macronectes. |
| |||
Murgonornis[73] | Gen. et sp. nov | Worthy et al. | Eocene | ![]() |
A presbyornithid. The type species is M. archeri | |||
Papulavis[74] |
Gen. et sp. nov |
In press |
Mourer-Chauviré et al. |
Eocene (Ypresian) |
A bird classified as cf. Aramidae. The type species is P. annae. |
|||
Petradyptes[71] |
Gen. et sp. nov |
Valid |
Ksepka et al. |
Paleocene (Teurian) |
Moeraki Formation |
An early penguin. The type species is P. stonehousei. |
||
Sp. nov |
Valid |
Mayr & Kitchener |
Eocene (Ypresian) |
London Clay |
A member of the family Threskiornithidae. |
|||
Sericuloides[76] |
Gen. et sp. nov |
Valid |
Nguyen |
Oligocene |
A bowerbird. The type species is S. marynguyenae. |
|||
Sororavis[77] | Gen. et sp. nov | Valid | Mayr & Kitchener | Eocene (Ypresian) | London Clay | ![]() |
A member of the family Morsoravidae. the type species S. solitarius. | |
Tegulavis[74] |
Gen. et sp. nov |
In press |
Mourer-Chauviré et al. |
Eocene (Ypresian) |
A bird classified as cf. Galliformes. The type species is T. corbalani. |
|||
Sp. nov |
Valid |
Mayr & Kitchener |
Eocene |
London Clay |
A member of the family Messelasturidae. |
|||
Tynskya crassitarsus[67] |
Sp. nov |
Valid |
Mayr & Kitchener |
Eocene |
London Clay |
A member of the family Messelasturidae. |
||
Yarquen[78] | Gen. et sp. nov | Tambussi et al. | Miocene | Collón Curá Formation | ![]() |
An owl in the family Strigidae. The type species is Y. dolgopolae. | ||
Gen. et sp. et comb. nov |
Valid |
Mayr & Kitchener |
Early Eocene |
London Clay |
An owl. The type species is Y. michaeldanielsi; genus also includes "Eostrix" gulottai Mayr (2016). Announced in 2022; the final article version was published in 2023. |
![]() |
Avian research
- Macaulay et al. (2023) report that, in spite of the differences of body shape, there is overall no difference in the position of whole-body centre-of-mass between birds and non-avian theropods, but rather that there is such difference between hindlimb-dominated predominantly terrestrial taxa and forelimb-dominated predominantly volant taxa regardless of their phylogenetic placement, and argue that the fully crouched bipedalism seen in modern birds evolved after powered flight.[80]
- Five specimens of Sapeornis chaoyangensis with different-preserved feathers are reported from the Early Cretaceous Jehol Biota (China) by Zhao et al. (2023), who examine their implications for the taphonomy of soft tissues from the Jehol Biota.[81]
- A study aiming to determine the diets of members of the family Pengornithidae is published by Miller et al. (2023), who report that Pengornis, Parapengornis and Yuanchuavis show adaptations for vertebrate carnivory.[82]
- Wang (2023) describes a new specimen of Parabohaiornis martini with a well-preserved skull from the Lower Cretaceous Jiufotang Formation (China), and reports the presence of the plesiomorphic temporal and palatal configurations (similar to those of non-avian dinosaurs) in the skull of Parabohaiornis.[83]
- Clark et al. (2023) attempt to determine the dietary habits of longipterygids, reporting dental features indicative of carnivory, with additional support for insectivory.[84]
- Lowi-Merri et al. (2023) provide evidence of soaring and foot-propelled swimming capabilities of Ichthyornis.[85]
- Buffetaut (2023) reports the discovery of a plaster cast of the lost femur of Struthio anderssoni from the late Pleistocene deposits of the Upper Cave at Zhoukoudian (China), and transfers the species S. anderssoni to the genus Pachystruthio.[86]
- A study on the evolutionary history of the elephant birds, based on data from fossil eggshells, is published by Grealy et al. (2023), who interpret their findings as supporting the placement of Mullerornis into a separate family, as well as indicative of the existence of a genetically distinct lineage of Aepyornis in Madagascar's far north, report evidence of divergence within Aepyornis corresponding with the onset of the Quaternary, and tentatively advocate synonymising Vorombe titan with Aepyornis maximus.[87]
- Figueiredo et al. (2023) report a partial coracoid of the genus Morus from the middle Miocene (Langhian) of the Setúbal Peninsula (Portugal), an instance that represents the first Miocene sulid described from the Iberian Peninsula.[88]
- A study on the phylogenetic affinities of vastanavids and messelasturids, incorporating data from new fossil specimens from the Eocene London Clay (Essex, United Kingdom), is published by Mayr & Kitchener (2023).[67]
Pterosaurs
New pterosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
In press |
Martill et al. |
Late Jurassic (late Kimmeridgian to Tithonian) |
A member of the family Ctenochasmatidae. The type species is B. maeuseri. |
| |||
Gen. et comb. nov |
Valid |
Pêgas et al. |
Early Cretaceous |
A member of the family Tapejaridae. The type species is "Huaxiapterus" corollatus Lü et al. (2006). |
||||
Pterosaur research
- A study on the diversification of pterosaurs during their evolutionary history, aiming to determine the factors that affected pterosaur evolution, is published by Yu, Zhang & Xu (2023).[91]
- Review of the fossil record of Jurassic and Cretaceous pterosaurs from Gondwana is published by Pentland & Poropat (2023).[92]
- Revision of the pterosaur assemblage from the Kem Kem Group (Morocco) is published by Smith et al. (2023), who provide revised diagnoses for Afrotapejara zouhrii and Alanqa saharica, and report at least three distinct jaw morphotypes which cannot be referred to any previously named species.[93]
- Description of the pectoral girdle morphology and histology in Hamipterus, providing evidence of both the similarities and differences between the flight apparatus of pterosaurs and birds, is published by Wu et al. (2023).[94]
- Smith, Martill & Zouhri (2023) reinterpret a purported shark spine from the Cenomanian Cambridge Greensand Member of the West Melbury Marly Chalk Formation (Cambridgeshire, United Kingdom) as a jaw fragment of an azhdarchoid distinct from Ornithostoma sedgwicki, but sharing a distinctive morphology with jaw fragments reported from the Kem Kem Beds of Morocco.[95]
- A study on the affinities of "Tupuxuara" deliradamus is published by Cerqueira, Müller & Pinheiro (2023), who interpret this pterosaur as a tapejarine.[96]
Other archosaurs
General research
- Wang, Claessens & Sullivan (2023) establish skeletal features associated with the attachment of uncinate processes to vertebral ribs in extant birds and crocodilians, attempt to determine their distribution in fossil archosaurs, and interpret their findings as indicating that cartilaginous uncinate processes were plesiomorphically present (and likely had a ventilatory function) in dinosaurs, and maybe even in archosaurs in general.[97]
- Aureliano et al. (2023) present the criteria which can be used to distinguish between lamellar bone fibres, Sharpey's fibres (tendon insertions) and air sac attachments in the bones of fossil archosaurs.[98]
References
- Sennikov, A. G. (2022). "A New Pseudosuchian from the Early Triassic of Eastern Europe". Paleontological Journal. 56 (11): 1391–1418. doi:10.1134/S0031030122110168. S2CID 256618821.
- Wilberg, E. W.; Godoy, P. L.; Griffiths, E. F.; Turner, A. H.; Benson, R. B. J. (2023). "A new early diverging thalattosuchian (Crocodylomorpha) from the Early Jurassic (Pliensbachian) of Dorset, U.K. and implications for the origin and evolution of the group". Journal of Vertebrate Paleontology. CLXVI (CLXVI). e2161909. doi:10.1080/02724634.2022.2161909. S2CID 256149424.
- Teschner, E. M.; Konietzko-Meier, D.; Desojo, J. B.; Schoch, R. R.; Klein, N. (2023). "Triassic Nursery? Evidence of gregarious behavior in juvenile pseudosuchian archosaurs as inferred by humeral histology of Aetosaurus ferratus (Norian; southern Germany)". Journal of Vertebrate Paleontology. 42 (2). e2168196. doi:10.1080/02724634.2023.2168196. S2CID 256864004.
- Lessner, E. J.; Dollman, K. N.; Clark, J. M.; Xu, X.; Holliday, C. M. (2023). "Ecomorphological patterns in trigeminal canal branching among sauropsids reveal sensory shift in suchians". Journal of Anatomy. doi:10.1111/joa.13826. PMID 36680380. S2CID 256055306.
- Wu, L.; Wu, X.-C.; You, H.-L.; Zhang, Y.; Zhao, J.; Yuan, Y.; Zhang, H.; Li, S. (2023). "A new specimen of Hsisosuchus (Mesoeucrocodylia, Crocodyliformes) from the Upper Jurassic of Yunnan, China with implications for the diversity of the ventral trunk shield of osteoderms in the genus". Historical Biology: 1–12. doi:10.1080/08912963.2023.2170796. S2CID 256564315.
- Aubier, P.; Jouve, S.; Schnyder, J.; Cubo, J. (2023). "Phylogenetic structure of the extinction and biotic factors explaining differential survival of terrestrial notosuchians at the Cretaceous–Palaeogene crisis". Palaeontology. 66 (1). e12638. doi:10.1111/pala.12638. S2CID 257137911.
- Pinheiro, A. E. P.; Pereira, P. V. L. G. C.; Vasconcellos, F. M.; Brum, A. S.; Souza, L. G.; Costa, F. R.; Castro, L. O. R.; Silva, K. F.; Bandeira, K. L. N. (2023). "New Itasuchidae (Sebecia, Ziphosuchia) remains and the radiation of an elusive Mesoeucrocodylia clade". Historical Biology: 1–26. doi:10.1080/08912963.2022.2139179. S2CID 255664924.
- Pochat-Cottilloux, Y.; Perrier, V.; Amiot, R.; Martin, J.E. (2023). "A peirosaurid mandible from the Albian–Cenomanian (Lower Cretaceous) of Algeria and the taxonomic content of Hamadasuchus (Crocodylomorpha, Peirosauridae)". Papers in Paleontology. 9 (2). doi:10.1002/spp2.1485.
- Puértolas-Pascual, E.; Kuzmin, I. T.; Serrano-Martínez, A.; Mateus, O. (2023). "Neuroanatomy of the crocodylomorph Portugalosuchus azenhae from the Late Cretaceous of Portugal". Journal of Anatomy. doi:10.1111/joa.13836. PMID 36732084. S2CID 256546983.
- Venczel, M.; Codrea, M.; Trif, N. (2023). "Eocene gavialoid teeth from southern Transylvania with notes on the diversity of Paleogene crocodilians from Romania" (PDF). North-Western Journal of Zoology. 19 (1).
- Burke, P. M. J.; Mannion, P. D. (2023). "Neuroanatomy of the crocodylian Tomistoma dowsoni from the Miocene of North Africa provides insights into the evolutionary history of gavialoids". Journal of Anatomy. doi:10.1111/joa.13846. PMID 36929596. S2CID 257581488.
- Lacerda, M.B.S.; de Andrade, M.B.; Sales, M.A.F.; Aragão, P.R.L.; Vieira, F.S.; Bittencourt, J.S.; Liparini, A. (2023). "The vertebrate fossil record from the Feliz Deserto Formation (Lower Cretaceous), Sergipe, NE Brazil: paleoecological, taphonomic, and paleobiogeographic implications". Cretaceous Research. 147: 105463. doi:10.1016/j.cretres.2022.105463. ISSN 0195-6671. S2CID 255635144.
- Agnolin, Federico L.; Gonzalez Riga, Bernardo J.; Aranciaga Rolando, Alexis M.; Rozadilla, Sebastián; Motta, Matías J.; Chimento, Nicolás R.; Novas, Fernando E. (2023-02-02). "A new gigant titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Northwestern Patagonia, Argentina". Cretaceous Research. 146: 105487. doi:10.1016/j.cretres.2023.105487. ISSN 0195-6671. S2CID 256559829.
- Prieto-Márquez, A.; Wagner, J. R. (2022). "A new 'duck-billed' dinosaur (Ornithischia: Hadrosauridae) from the upper Campanian of Texas points to a greater diversity of early hadrosaurid offshoots". Cretaceous Research. 143. 105416. doi:10.1016/j.cretres.2022.105416. S2CID 253470207.
- Cullen, T. M.; Longstaffe, F. J.; Wortmann, U. G.; Huang, L.; Evans, D. C. (2023). "Anomalous 13C enrichment in Mesozoic vertebrate enamel reflects environmental conditions in a "vanished world" and not a unique dietary physiology". Paleobiology: 1–15. doi:10.1017/pab.2022.43. S2CID 255919241.
- Lazer, Kayla; Stout, Ian; Simpson, Edward; Wizevich, Michael; Keebler, Abigal; Hetrick, Grace (2023). "Preserved membrane on dinosaur eggshell fragments, Upper Jurassic Morrison Formation, eastern Utah". PALAIOS. 38 (1): 43–55. Bibcode:2023Palai..38...43L. doi:10.2110/palo.2022.002. S2CID 256351474.
- Navarro-Lorbés, P.; Díaz-Martínez, I.; Valle-Melón, J. M.; Rodríguez, Á.; Moratalla, J. J.; Ferrer-Ventura, M.; San Juan-Palacios, R.; Torices, A. (2023). "Dinosaur swim tracks from the Lower Cretaceous of La Rioja, Spain: an ichnological approach to non-common behaviours". Cretaceous Research. 147. 105516. doi:10.1016/j.cretres.2023.105516. S2CID 257359478.
- Yin, Ya-Lei; Xie, Fei; Zhou, Chang-Fu; Pei, Rui (2023-02-20). "Dinosaur teeth from the mid-Cretaceous Sunjiawan Formation of western Liaoning Province, China". Historical Biology: 1–7. doi:10.1080/08912963.2023.2179398. S2CID 257065447.
- Xing, Lida; Wang, Yongdong; Lockley, Martin G.; Klein, Hendrik; Liu, Chang; Persons, W. Scott (2023-01-02). "The first record of dinosaur track from Hubei Province, Central China". Historical Biology: 1–6. doi:10.1080/08912963.2022.2164494. ISSN 0891-2963. S2CID 255671833.
- D'Emic, M. D.; O'Connor, P. M.; Sombathy, R. S.; Cerda, I.; Pascucci, T. R.; Varricchio, D.; Pol, D.; Dave, A.; Coria, R. A.; Curry Rogers, K. A. (2023). "Developmental strategies underlying gigantism and miniaturization in non-avialan theropod dinosaurs". Science. 379 (6634): 811–814. doi:10.1126/science.adc8714. PMID 36821658. S2CID 257103111.
- Henderson, D. M. (2023). "Growth constraints set an upper limit to theropod dinosaur body size". The Science of Nature. 110 (1). 4. Bibcode:2023SciNa.110....4H. doi:10.1007/s00114-023-01832-1. PMID 36715746. S2CID 256362332.
- Cullen, T. M.; Larson, D. W.; Witton, M. P.; Scott, D.; Maho, T.; Brink, K. S.; Evans, D. C.; Reisz, D. (2023). "Theropod dinosaur facial reconstruction and the importance of soft tissues in paleobiology". Science. 379 (6639): 1348–1352. doi:10.1126/science.abo7877. PMID 36996202.
- Peng, S.; Liu, J.; Benton, M. J.; Jin, X.; Shi, Z. (2023). "The first dinosaurs in China: Dating Late Triassic footprint fossils from the Sichuan Basin". Gondwana Research. 117: 261–273. doi:10.1016/j.gr.2023.02.003. S2CID 256671291.
- Zhang, Z.-C.; Wang, T.; You, H.-L. (2023). "A New Specimen of Sinosaurus triassicus (Dinosauria: Theropoda) from the Early Jurassic of Lufeng, Yunnan, China". Historical Biology. doi:10.1080/08912963.2023.2190760.
- Sharma, A.; Hendrickx, C.; Singh, S. (2023). "First theropod record from the Marine Bathonian of Jaisalmer Basin, Tethyan Coast of Gondwanan India". Rivista Italiana di Paleontologia e Stratigrafia. 129 (1): 49–64. doi:10.54103/2039-4942/18306. S2CID 256347914.
- Barker, C.T.; Naish, D.; Trend, J.; Michels, L.V.; Witmer, L.; Ridgley, R.; Rankin, K.; Clarkin, C.; Schneider, P.; Gostling, N.J. (2023). "Modified skulls but conservative brains? The palaeoneurology and endocranial anatomy of baryonychine dinosaurs (Theropoda: Spinosauridae)". Journal of Anatomy: 1–22. doi:10.1111/joa.13837. PMID 36781174. S2CID 256845477.
- Smith, R; Martill, D (2023-02-07). "An unusual dental pathology in a tooth of Spinosaurus (Dinosauria, Theropoda) from the mid-Cretaceous of Morocco". Cretaceous Research. 146: 105499. doi:10.1016/j.cretres.2023.105499. S2CID 256685951.
- Aranciaga Rolando, A. M.; Novas, F. E.; Calvo, J. O.; Porfiri, J. D.; Dos Santos, D. D.; Lamanna, M. C. (2023). "Reconstruction of the pectoral girdle and forelimb musculature of Megaraptora (Dinosauria: Theropoda)". The Anatomical Record. doi:10.1002/ar.25128. PMID 36647300. S2CID 255939861.
- Samathi, Adun; Weluwanarak, Jakkrapat; Duanyai, Punyawee; Kaikaew, Siripat; Suteethorn, Suravech (2023-01-13). "An unusual metatarsal of theropod dinosaur from the lower cretaceous of Thailand: the first detailed study of paleopathology in Megaraptora". Historical Biology: 1–6. doi:10.1080/08912963.2023.2166833. ISSN 0891-2963. S2CID 255902629.
- Herculano-Houzel, S. (2023). "Theropod dinosaurs had primate-like numbers of telencephalic neurons". Journal of Comparative Neurology. doi:10.1002/cne.25453. PMID 36603059.
- Rodrigo Pérez Ortega (2023-01-10). "Some dinos may have been as brainy as modern primates, controversial study argues". Science.org.
- Pahl, Cameron C.; Ruedas, Luis A. (2021). "Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs". Ecological Modelling. 458: 109706. doi:10.1016/j.ecolmodel.2021.109706. ISSN 0304-3800.
- Kane, Adam; Healy, Kevin; Ruxton, Graeme D. (2023). "Was Allosaurus really predominantly a scavenger?". Ecological Modelling. 476: 110247. doi:10.1016/j.ecolmodel.2022.110247. ISSN 0304-3800. S2CID 254712679.
- Pahl, Cameron C.; Ruedas, Luis A. (2023-03-01). "Allosaurus was predominantly a scavenger". Ecological Modelling. 477: 110261. doi:10.1016/j.ecolmodel.2022.110261. ISSN 0304-3800. S2CID 255661337.
- Anné, J.; Canoville, A.; Edwards, N. P.; Schweitzer, M. H.; Zanno, L. E. (2023). "Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus rex". Biology. 12 (2). 264. doi:10.3390/biology12020264. PMC 9953530. PMID 36829540.
- Qin, Z.; Liao, C.-C.; Benton, M. J.; Rayfield, E. J. (2023). "Functional space analyses reveal the function and evolution of the most bizarre theropod manual unguals". Communications Biology. 6 (1). 181. doi:10.1038/s42003-023-04552-4. PMC 9935540. PMID 36797463.
- Chamberlain, JA; Knoll, K; Sertich, J (2023-02-07). "Non-avian theropod phalanges from the marine Fox Hills Formation (Maastrichtian), western South Dakota, USA". PeerJ. 11: e14665. doi:10.7717/peerj.14665/supp-1. PMC 9912944. PMID 36778140.
- Smith, D. K.; Gillette, D. D. (2023). "Reconstruction of soft non-contractile tissue in the derived therizinosaur Nothronychus: the interplay of soft tissue and stress on hindlimb ossification and posture". Journal of Morphology. 284 (5). e21579. doi:10.1002/jmor.21579. PMID 36929022.
- Malafaia, Elisabete; Escaso, Fernando; Coria, Rodolfo A.; Ortega, Francisco (2023-01-19). "An Eudromaeosaurian Theropod from Lo Hueco (Upper Cretaceous. Central Spain)". Diversity. 15 (2): 141. doi:10.3390/d15020141. ISSN 1424-2818.
- Averianov, A. O.; Lopatin, A. V. (2023). "New data on Kansaignathus sogdianus, a dromaeosaurid theropod from the Upper Cretaceous of Tajikistan". Cretaceous Research. 147. 105524. doi:10.1016/j.cretres.2023.105524. S2CID 257453407.
- Tagliavento, M.; Davies, A. J.; Bernecker, M.; Staudigel, P. T.; Dawson, R. R.; Dietzel, M.; Götschl, K.; Guo, W.; Schulp, A. S.; Therrien, F.; Zelenitsky, D. K.; Gerdes, A.; Müller, W.; Fiebig, J. (2023). "Evidence for heterothermic endothermy and reptile-like eggshell mineralization in Troodon, a non-avian maniraptoran theropod". Proceedings of the National Academy of Sciences of the United States of America. 120 (15). e2213987120. doi:10.1073/pnas.2213987120. PMID 37011196.
- Lockley, Martin G.; Lallensack, Jens N.; Sciscio, Lara; Bordy, Emese M. (2023). "The early Mesozoic saurischian trackways Evazoum and Otozoum: implications for 'prosauropod' (basal sauropodomorph) gaits". Historical Biology: 1–19. doi:10.1080/08912963.2022.2163170. S2CID 256253243.
- Aureliano, T.; Ghilardi, A. M.; Müller, R. T.; Kerber, L.; Fernandes, M. A.; Ricardi-Branco, F.; Wedel, M. J. (2023). "The origin of an invasive air sac system in sauropodomorph dinosaurs". The Anatomical Record. doi:10.1002/ar.25209. PMID 36971057.
- Wei, Xue-Fang; Wang, Qi-Yu; An, Xian-Yin; Wang, Bao-Di; Zhang, Yu-Jie; Mou, Chuang-Long; Li, Yong; Wang, Dong-Bing; Ma, Waisum; Kundrát, Martin (2023-02-11). "New sauropod remains from the Middle Jurassic Dongdaqiao Formation of Qamdo, eastern Tibet". Palaeoworld. doi:10.1016/j.palwor.2023.02.002. S2CID 256813538.
- An, X.; Xu, X.; Han, F.; Sullivan, C.; Wang, Q.; Li, Y.; Wang, D.; Wang, B.; Hu, J. (2023). "A new juvenile sauropod specimen from the Middle Jurassic Dongdaqiao Formation of East Tibet". PeerJ. 11. e14982. doi:10.7717/peerj.14982. PMC 10039653.
- Moore, Andrew J.; Barrett, Paul M.; Upchurch, Paul; Liao, Chun-Chi; Ye, Yong; Hao, Baoqiao; Xu, Xing (2023-01-01). "Re-assessment of the Late Jurassic eusauropod Mamenchisaurus sinocanadorum Russell and Zheng, 1993, and the evolution of exceptionally long necks in mamenchisaurids". Journal of Systematic Palaeontology. 21 (1): 2171818. doi:10.1080/14772019.2023.2171818. ISSN 1477-2019. S2CID 257573094.
- Tatehata, J.-I.; Mukunoki, T.; Tanoue, K. (2023). "Description of a Titanosauriform (Sauropoda, Dinosauria) Cervical Vertebra from the Lower Cretaceous Kanmon Group, Southwestern Japan". Paleontological Research. 27 (3): 350–358. doi:10.2517/PR220009. S2CID 255441172.
- Dhiman, H.; Verma, V.; Singh, L. R.; Miglani, V.; Jha, D. K.; Sanyal, P.; Tandon, S. K.; Prasad, G. V. R. (2023). "New Late Cretaceous titanosaur sauropod dinosaur egg clutches from lower Narmada valley, India: Palaeobiology and taphonomy". PLOS ONE. 18 (1). e0278242. doi:10.1371/journal.pone.0278242. PMC 9848018. PMID 36652404.
- Button, D. J.; Porro, L. B.; Lautenschlager, S.; Jones, M. E. H.; Barrett, P. M. (2023). "Multiple pathways to herbivory underpinned deep divergences in ornithischian evolution". Current Biology. 33 (3): 557–565.e7. doi:10.1016/j.cub.2022.12.019. PMID 36603586.
- Dempsey, M.; Maidment, S. C. R.; Hedrick, B. P.; Bates, K. T. (2023). "Convergent evolution of quadrupedality in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics". Proceedings of the Royal Society B: Biological Sciences. 290 (1992). 20222435. doi:10.1098/rspb.2022.2435. PMC 9890092. PMID 36722082. S2CID 256416920.
- Manitkoon, S.; Deesri, U.; Warapeang, P.; Nonsrirach, T.; Chanthasit, P. (2023). "Ornithischian dinosaurs in Southeast Asia: a review with palaeobiogeographic implications". Fossil Record. 26 (1): 1–25. doi:10.3897/fr.26.e93456. S2CID 255661505.
- Surmik, D.; Słowiak-Morkovina, J.; Szczygielski, T.; Wojtyniak, M.; Środek, D.; Dulski, M.; Balin, K.; Krzykawski, T.; Pawlicki, R. (2023). "The first record of fossilized soft parts in ossified tendons and implications for the understanding of tendon mineralization". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad001.
- Becerra, M. G.; Pol, D.; Porro, L. B.; Paulina-Carabajal, A.; Rauhut, O. W. M. (2023). "Craniomandibular osteology of Manidens condorensis (Ornithischia: Heterodontosauridae) from the upper Lower Jurassic of Argentina". Journal of Vertebrate Paleontology. e2181087. doi:10.1080/02724634.2023.2181087.
- Anderson, L; Brassey, C; Pod, S; Bates, K; Sellers, W.I. (2023-03-10). "Investigating the quadrupedal abilities of Scutellosaurus lawleri and its implications for locomotor behavior evolution among dinosaurs". The Anatomical Record. doi:10.1002/ar.25189. PMID 36896818. S2CID 257428246.
- Gilmore, C. W. (1914). "Osteology of the armored Dinosauria in the United States National Museum, with special reference to the genus Stegosaurus". Bulletin of the United States National Museum. 89: 1–143. hdl:10088/30429.
- Galton, P. M. (2023). "A sternal bone of plated ornithischian dinosaur Stegosaurus (Upper Jurassic, Utah), the first for Stegosauria, and the enigmatic "sternal bones" of Gilmore (1914)". Revue de Paléobiologie, Genève. 42 (1): 129–141. doi:10.5281/zenodo.7446065.
- Brum, Arthur S.; Eleutério, Lúcia; Simōes, Tiago; Whitney, Megan; Souza, Geovane; Sayāo, Juliana; Kellner, Alexander (2023-02-20). "Ankylosaurian body armor function and evolution with insights from osteohistology and morphometrics of new specimens from the Late Cretaceous of Antarctica". Paleobiology: 1–22. doi:10.1017/pab.2023.4. S2CID 257073096.
- Yoshida, J.; Kobayashi, Y.; Norell, M. A. (2023). "An ankylosaur larynx provides insights for bird-like vocalization in non-avian dinosaurs". Communications Biology. 6 (1). 152. doi:10.1038/s42003-023-04513-x. PMC 9932143. PMID 36792659.
- Tumanova, T.; Penkalski, P.; Gallagher, W. B.; Engiles, J. B.; Dodson, P. (2023). "A potentially fatal cranial pathology in a specimen of Tarchia". The Anatomical Record. doi:10.1002/ar.25205. PMID 37014144.
- Maidment, S. C. R.; Chapelle, K. E. J.; Bonsor, J. A.; Button, D.; Barrett, P. M. (2023). "Osteology and relationships of Cumnoria prestwichii (Ornithischia: Ornithopoda) from the Late Jurassic of Oxfordshire, UK". Monographs of the Palaeontographical Society. 176 (664): 1–55. doi:10.1080/02693445.2022.2162669. S2CID 256107302.
- García-Cobeña, J.; Cobosa, A.; Verdú, F. J. (2023). "Ornithopod tracks and bones: Paleoecology and an unusual evidence of quadrupedal locomotion in the Lower Cretaceous of eastern Iberia (Teruel, Spain)". Cretaceous Research. 144. 105473. doi:10.1016/j.cretres.2023.105473. S2CID 255679510.
- Dudgeon, T.W.; Evans, D.C. (2023-03-10). "Calvarial suture interdigitation in hadrosaurids (Ornithischia: Ornithopoda): Perspectives through ontogeny and evolution". Evolution&Development. doi:10.1111/ede.12430. PMID 36896717. S2CID 257428248.
- Dyer, A. D.; Powers, M. J.; Currie, P. J. (2023). "Problematic putative pachycephalosaurids: synchrotron μCT imaging shines new light on the anatomy and taxonomic validity of Gravitholus albertae from the Belly River Group (Campanian) of Alberta, Canada". Vertebrate Anatomy Morphology Palaeontology. 10 (1): 65–110. doi:10.18435/vamp29388. S2CID 257046495.
- Yang, Y.; Gong, E.; Zhao, C.; Wu, W.; Godefroit, P.; Hu, D. (2023). "Endocranial morphology of Liaoceratops yanzigouensis (Dinosauria: Ceratopsia) from Early Cretaceous Jehol Biota of Liaoning in China". Historical Biology: 1–7. doi:10.1080/08912963.2023.2180739. S2CID 257227953.
- Nabavizadeh, A (2023-03-08). "How Triceratops got its face: An update on the functional evolution of the ceratopsian head". The Anatomical Record. doi:10.1002/ar.25196. PMID 36883781. S2CID 257404473.
- Houde, Peter; Dickson, Meig; Camarena, Dakota (2023). "Basal Anseriformes from the Early Paleogene of North America and Europe". Diversity. 7 (2): 233. doi:10.3390/d15020233.
- Mayr, G.; Kitchener, A. C. (2023). "The Vastanavidae and Messelasturidae (Aves) from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (2): 113–139. doi:10.1127/njgpa/2023/1119. S2CID 257598310.
- Buffetaut, E.; Angst, D.; Tong, H. (2023). "A new enantiornithine bird from Upper Cretaceous non-marine deposits at Villespassans (Hérault, southern France)". Annales de Paléontologie. 109 (1). 102585. doi:10.1016/j.annpal.2022.102585.
- Li, Z; Wang, M.; Stidham, T. A.; Zhou, Z. (2023). "Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies". Nature Ecology & Evolution. 7 (1): 20–31. doi:10.1038/s41559-022-01921-w. PMID 36593291. S2CID 255472056.
- Mather, Ellen K.; Lee, Michael S. Y.; Camens, Aaron B.; Worthy, Trevor H. (2023-03-15). "A giant raptor (Aves: Accipitridae) from the Pleistocene of southern Australia". Journal of Ornithology. doi:10.1007/s10336-023-02055-x. ISSN 2193-7192. S2CID 257575533.
- Ksepka, D. T.; Field, D. J.; Heath, T. A.; Pett, W.; Thomas, D. B.; Giovanardi, S.; Tennyson, A. J. D. (2023). "Largest-known fossil penguin provides insight into the early evolution of sphenisciform body size and flipper anatomy". Journal of Paleontology. 97 (2): 434–453. doi:10.1017/jpa.2022.88. S2CID 256709376.
- Tennyson, A.J.D.; Salvador, R.B. (2023). "A New Giant Petrel (Macronectes, Aves: Procellariidae) from the Pliocene of Taranaki, New Zealand". Taxonomy. 3 (1): 57–67. doi:10.3390/taxonomy3010006.
- Worthy, Trevor H.; De Pietri, Vanesa L.; Scofield, R. Paul; Hand, Suzanne J. (2023-03-20). "A new Eocene species of presbyornithid (Aves, Anseriformes) from Murgon, Australia". Alcheringa: An Australasian Journal of Palaeontology. 0 (0): 1–15. doi:10.1080/03115518.2023.2184491. ISSN 0311-5518.
- Mourer-Chauviré, C.; Bourdon, E.; Duffaud, S.; Le Roux, G.; Laurent, Y. (2023). "New avian remains from the early Eocene of La Borie, southern France". Geobios. doi:10.1016/j.geobios.2022.10.004. S2CID 257251285.
- Mayr, G.; Kitchener, A. C. (2023). "Multiple skeletons of Rhynchaeites from the London Clay reveal the osteology of early Eocene ibises (Aves, Threskiornithidae)". PalZ. doi:10.1007/s12542-022-00647-1. S2CID 256163083.
- Nguyen, J. M. T. (2023). "The earliest record of bowerbirds (Passeriformes, Ptilonorhynchidae) from the Oligo-Miocene of northern Australia". Alcheringa: An Australasian Journal of Palaeontology: 1–9. doi:10.1080/03115518.2023.2180537. S2CID 257578512.
- "A new fossil from the London Clay documents the convergent origin of a "mousebird-like" tarsometatarsus in an early Eocene near-passerine bird". Acta Palaeontologica Polonica. 68 (1): 1–11. doi:10.4202/app.01049.2022. S2CID 257422961. Retrieved 2023-03-07.
- Tambussi, Claudia P.; Degrange, Federico J.; González Ruiz, Laureano (2023-03-06). "An extinct owl (aves: strigidae) from the middle miocene of Patagonia". Historical Biology: 1–6. doi:10.1080/08912963.2023.2180738. ISSN 0891-2963. S2CID 257392373.
- Mayr, G.; Kitchener, A. C. (2022). "Early Eocene fossil illuminates the ancestral (diurnal) ecomorphology of owls and documents a mosaic evolution of the strigiform body plan". Ibis. 165 (1): 231–247. doi:10.1111/ibi.13125. S2CID 251455832.
- Macaulay, S.; Hoehfurtner, T.; Cross, S. R. R.; Marek, R. D.; Hutchinson, J. R.; Schachner, E. R.; Maher, A. E.; Bates, K. T. (2023). "Decoupling body shape and mass distribution in birds and their dinosaurian ancestors". Nature Communications. 14. 1575. doi:10.1038/s41467-023-37317-y. PMC 10033513. PMID 36949094.
- Zhao, Yan; Tian, Qian; Ren, Guang-Ying; Guo, Ying; Zheng, Xiao-Ting (2023). "Taphonomic analysis of the exceptional preservation of early bird feathers during the early Cretaceous period in Northeast China". Frontiers in Earth Science. 10. Bibcode:2023FrEaS..1020594Z. doi:10.3389/feart.2022.1020594.
- Miller, C. V.; Pittman, M.; Wang, X.; Zheng, X.; Bright, J. A. (2023). "Quantitative investigation of pengornithid enantiornithine diet reveals macrocarnivorous ecology evolved in birds by Early Cretaceous". iScience. 26 (3). 106211. doi:10.1016/j.isci.2023.106211. PMC 10009206. PMID 36923002.
- Wang, M. (2023). "A new specimen of Parabohaiornis martini (Avialae: Enantiornithes) sheds light on early avian skull evolution". Vertebrata PalAsiatica: 1. doi:10.19615/j.cnki.2096-9899.230217.
- Clark, A. D.; Hu, H.; Benson, R. B. J.; O'Connor, J. K. (2023). "Reconstructing the dietary habits and trophic positions of the Longipterygidae (Aves: Enantiornithes) using neontological and comparative morphological methods". PeerJ. 11. e15139. doi:10.7717/peerj.15139. PMC 10062354.
- Lowi-Merri, T. M.; Demuth, O. E.; Benito, J.; Field, D. J.; Benson, R. B. J.; Claramunt, S.; Evans, D. C. (2023). "Reconstructing locomotor ecology of extinct avialans: a case study of Ichthyornis comparing sternum morphology and skeletal proportions". Proceedings of the Royal Society B: Biological Sciences. 290 (1994). 20222020. doi:10.1098/rspb.2022.2020. PMC 9993061. PMID 36883281.
- Buffetaut, E. (2023). "The Missing Late Pleistocene Ostrich Femur from Zhoukoudian (China): New Information Provided by a Rediscovered Old Cast". Diversity. 15 (2). 265. doi:10.3390/d15020265.
- Grealy, A.; Miller, G. H.; Phillips, M. J.; Clarke, S. J.; Fogel, M.; Patalwala, D.; Rigby, P.; Hubbard, A.; Demarchi, B.; Collins, M.; Mackie, M.; Sakalauskaite, J.; Stiller, J.; Clarke, J. A.; Legendre, L. J.; Douglass, K.; Hansford, J.; Haile, J.; Bunce, M. (2023). "Molecular exploration of fossil eggshell uncovers hidden lineage of giant extinct bird". Nature Communications. 14 (1). 914. doi:10.1038/s41467-023-36405-3. PMC 9974994. PMID 36854679.
- Figueiredo, Silvério; de Carvalho, Carlos Neto; Cachão, Mário; Fonseca, Alexandre (2023-01-09). "A marine bird (sulidae, Aves) from the Langhian (middle Miocene) of Penedo beach (Setúbal Peninsula—SW Portugal) and its paleoenvironmental context". Journal of Iberian Geology. 49 (1): 21–29. doi:10.1007/s41513-022-00203-5. ISSN 1886-7995.
- Martill, D. M.; Frey, E.; Tischlinger, H.; Mäuser, M.; Rivera-Sylva, H. E.; Vidovic, S. U. (2023). "A new pterodactyloid pterosaur with a unique filter-feeding apparatus from the Late Jurassic of Germany". PalZ. doi:10.1007/s12542-022-00644-4. S2CID 256166586.
- Pêgas, R. V.; Zhoi, X.; Jin, X.; Wang, K.; Ma, W. (2023). "A taxonomic revision of the Sinopterus complex (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota, with the new genus Huaxiadraco". PeerJ. 11. e14829. doi:10.7717/peerj.14829. PMC 9922500. PMID 36788812.
- Yu, Y.; Zhang, C.; Xu, X. (2023). "Complex macroevolution of pterosaurs". Current Biology. 33 (4): 770–779.e4. doi:10.1016/j.cub.2023.01.007. PMID 36787747. S2CID 256831564.
- Pentland, A. H.; Poropat, S. F. (2023). "A review of the Jurassic and Cretaceous Gondwanan pterosaur record". Gondwana Research. doi:10.1016/j.gr.2023.03.005.
- Smith, R. E.; Ibrahim, N.; Longrich, N.; Unwin, D. M.; Jacobs, M. L.; Williams, C. J.; Zouhri, S.; Martill, D. M. (2023). "The pterosaurs of the Cretaceous Kem Kem Group of Morocco". PalZ. doi:10.1007/s12542-022-00642-6. S2CID 256608633.
- Wu, Q.; Chen, H.; Li, Z.; Jiang, S.; Wang, X.; Zhou, Z. (2023). "The morphology and histology of the pectoral girdle of Hamipterus (Pterosauria), from the Early Cretaceous of Northwest China". The Anatomical Record. doi:10.1002/ar.25167. PMID 36787121. S2CID 256844449.
- Frey, E.; Martill, D. M.; Zouhri, S. (2023). "Distinctive azhdarchoid pterosaur jaws from the mid-Cretaceous Cambridge Greensand of eastern England and the Kem Kem Group of Morocco". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2023.03.002.
- Cerqueira, G. M.; Müller, R. T.; Pinheiro, F. L. (2023). "On the phylogenetic affinities of the tapejarid pterosaur 'Tupuxuara deliradamus' from the Lower Cretaceous of Brazil". Historical Biology: 1–6. doi:10.1080/08912963.2023.2180741. S2CID 257064743.
- Wang, Y.; Claessens, L. P. A. M.; Sullivan, C. (2023). "Deep reptilian evolutionary roots of a major avian respiratory adaptation". Communications Biology. 6 (1). 3. doi:10.1038/s42003-022-04301-z. PMC 9845227. PMID 36650231.
- Aureliano, T.; Ghilardi, A. M.; Fernandes, M. A.; Ricardi-Branco, F. S. (2023). "Air sac attachments or tendon scars: the distinction between soft tissue traces in archosaur bone". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlac103.