Timeline of gravitational physics and relativity
The following is a timeline of gravitational physics and general relativity.
General relativity |
---|
![]() |
|
Before 1500
- 3rd century BC - Aristarchus of Samos proposes heliocentric model, measures the distance to the Moon and its size
1500s
- 1543 – Nicolaus Copernicus places the Sun at the gravitational center, starting a revolution in science
- 1583 – Galileo Galilei induces the period relationship of a pendulum from observations (according to later biographer).
- 1586 – Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped.
- 1589 – Galileo Galilei describes a hydrostatic balance for measuring specific gravity.
- 1590 – Galileo Galilei formulates modified Aristotelean theory of motion (later retracted) based on density rather than weight of objects.
1600s
- 1602 – Galileo Galilei conducts experiments on pendulum motion.
- 1604 – Galileo Galilei conducts experiments with inclined planes and induces the law of falling objects.
- 1607 – Galileo Galilei derives a mathematical formulation of the law of falling objects based on his earlier experiments.
- 1608 – Galileo Galilei discovers the parabolic arc of projectiles through experiment.
- 1609 – Johannes Kepler describes the motion of planets around the Sun, now known as Kepler's laws of planetary motion.
- 1665 – Isaac Newton introduces an inverse-square universal law of gravitation uniting terrestrial and celestial theories of motion and uses it to predict the orbit of the Moon and the parabolic arc of projectiles.
- 1684 – Isaac Newton proves that planets moving under an inverse-square force law will obey Kepler's laws in a letter to Edmond Halley.
- 1686 – Isaac Newton uses a fixed length pendulum with weights of varying composition to test the weak equivalence principle to 1 part in 1000.[1]
- 1686 – Isaac Newton publishes his Mathematical Principles of Natural Philosophy, where he develops his calculus, states his laws of motion and gravitation, proves the shell theorem, explains the tides, and calculates the figure of the Earth.
1700s
- 1705 – Edmond Halley predicts the return of Halley's comet in 1758,[2] the first use of Newton's laws by someone other than Newton himself.[3]
- 1755 – Immanuel Kant advances Emanuel Swedenborg's nebular hypothesis on the origin of the Solar System.[4]
- 1767 – Leonhard Euler solves Euler's restricted three-body problem.
- 1772 – Joseph-Louis Lagrange discovers the Lagrange points.
- 1796 – Pierre-Simon de Laplace independently introduces the nebular hypothesis.[4]
- 1798 – Henry Cavendish tests Newton's law of universal gravitation using a torsion balance, leading to the first accurate value for the gravitational constant and the mean density of the Earth.[5][6]
1800s
- 1846 – Urbain Le Verrier and John Couch Adams, studying Uranus' orbit, independently prove that another, farther planet must exist. Neptune was found at the predicted moment and position.
- 1855 – Le Verrier observes a 35 arcsecond per century excess precession of Mercury's orbit and attributes it to another planet, inside Mercury's orbit. The planet was never found. See Vulcan.
- 1876 – William Kingdon Clifford suggests that the motion of matter may be due to changes in the geometry of space
- 1882 – Simon Newcomb observes a 43 arcsecond per century excess precession of Mercury's orbit
- 1887 – Albert A. Michelson and Edward W. Morley in their famous experiment do not detect the ether drift
- 1889 – Loránd Eötvös uses a torsion balance to test the weak equivalence principle to 1 part in one billion.[7]
- 1893 – Ernst Mach states Mach's principle; first constructive attack on the idea of Newtonian absolute space
- 1898 – Henri Poincaré states that simultaneity is relative.
- 1899 – Hendrik Antoon Lorentz published the Lorentz transformations.
1900s
- 1902 – Paul Gerber explains the movement of the perihelion of Mercury using finite speed of gravity.[8] His formula, at least approximately, matches the later model from Einstein's general relativity, but Gerber's theory was incorrect.
- 1904 – Henri Poincaré presents the principle of relativity for electromagnetism
- 1905 – Albert Einstein completes his special theory of relativity[9] and states the equivalence of mass and energy,[10] in modern form.[11]
- 1907 – Albert Einstein introduces the principle of equivalence of gravitational and inertial mass and uses it to predict gravitational redshift and gravitational lensing.[12]
1910s
- 1915-16 – Albert Einstein completes his general theory of relativity.[13] He explains the perihelion of Mercury and calculates gravitational lensing correctly and introduces the post-Newtonian approximation.[14][15]
- 1915 – David Hilbert introduces Hilbert's action principle,[16] another way of deriving the Einstein field equations of general relativity.
- 1915 – Karl Schwarzschild publishes the Schwarzschild metric about a month after Einstein published his general theory of relativity.[17][18] This was the first solution to the Einstein field equations other than the trivial flat space solution.[19][20]
- 1916 – Albert Einstein predicts gravitational waves.[21]
- 1916 – Willem de Sitter predicts the geodetic effect.[22]
- 1917 - Albert Einstein applies his field equations to the entire Universe.[23] Physical cosmology is born.
- 1916-20 – Arthur Eddington studies the internal constitution of the stars.[24][25]
- 1918 – Albert Einstein derives the quadrupole formula for gravitational radiation.[26][27]
- 1918 – Josef Lense and Hans Thirring find the gravitomagnetic frame-dragging of gyroscopes in the equations of general relativity.[28][29][30]
- 1919 – Arthur Eddington leads a solar eclipse expedition which detects gravitational deflection of light by the Sun,[31] which, despite opinion to the contrary, survives modern scrutiny.[32] Other teams failed for reasons of war and politics.[33]
1920s
- 1921 – Theodor Kaluza demonstrates that a five-dimensional version of Einstein's equations unifies gravitation and electromagnetism[34]
- 1922 – Alexander Friedmann derives the Friedmann equations.[35]
- 1923 – George David Birkhoff proves Birkhoff's theorem on the uniqueness of the Schwarzschild solution.
- 1924 – Edwin Hubble discovers Hubble's law.[36]
- 1927 – Georges Lemaître publishes his hypothesis of the primeval atom.[37]
1930s
- 1931 – Subrahmanyan Chandrasekhar studies the stability of white dwarfs.[38][39]
- 1931 – Georges Lemaître and Arthur Eddington predict the expansion of the Universe.[40][41]
- 1931 – Albert Einstein introduces his cosmological constant.[42]
- 1931 – Albert Einstein and Willem de Sitter propose the Einstein-de Sitter cosmological model.[43]
- 1935 – Albert Einstein and Nathan Rosen derive the Einstein-Rosen bridge, the first wormhole solution.[44]
- 1936 – Albert Einstein predicts that a gravitational lens brightens the light coming from a distant object to the observer.[45]
- 1937 – Fritz Zwicky states that galaxies could act as gravitational lenses[46]
- 1937 – Albert Einstein and Nathan Rosen obtain the Einstein-Rosen metric, the first exact solution describing gravitational waves.[47]
- 1938 – Albert Einstein, Leopold Infeld, and Banesh Hoffmann obtain the Einstein-Infeld-Hoffmann equations of motion.[48]
- 1939 – Hans Bethe shows that nuclear fusion is responsible for energy production inside stars,[49] building upon the Kelvin–Helmholtz mechanism.
- 1939 – Robert Serber, George Volkoff, Richard Tolman, and J. Robert Oppenheimer study the stability of neutron stars, obtaining the Tolman–Oppenheimer–Volkoff limit[50][51]
- 1939 – J. Robert Oppenheimer and Hartland Snyder examine the continued gravitational contraction of a star[52]
1940s
- 1948 – Ralph Alpher and Robert Herman predict the cosmic microwave background.[53][54]
- 1949 – Cornelius Lanczos introduces the Lanczos potential for the Weyl tensor.[55]
- 1949 – Kurt Gödel discovers Gödel's solution.[56]
1950s
- 1953 – P. C. Vaidya Newtonian time in general relativity, Nature, 171, p260.
- 1956 – John Lighton Synge publishes the first relativity text emphasizing spacetime diagrams and geometrical methods,
- 1957 – Felix A. E. Pirani uses Petrov classification to understand gravitational radiation,
- 1957 – Richard Feynman introduces his sticky bead argument,[57]
- 1957 – John Wheeler discusses the breakdown of classical general relativity near singularities and the need for quantum gravity
- 1959 – Pound–Rebka experiment, first precision test of gravitational redshift,
- 1959 – Lluís Bel introduces Bel–Robinson tensor and the Bel decomposition of the Riemann tensor,
- 1959 – Arthur Komar introduces the Komar mass,
- 1959 – Richard Arnowitt, Stanley Deser and Charles W. Misner developed ADM formalism.
1960s
- 1960 – Martin Kruskal and George Szekeres independently introduce the Kruskal–Szekeres coordinates for the Schwarzschild vacuum.[58]
- 1960 – Shapiro effect confirmed,
- 1960 – Thomas Matthews and Allan R. Sandage associate 3C 48 with a point-like optical image, show radio source can be at most 15 light minutes in diameter,
- 1960 – Carl H. Brans and Robert H. Dicke introduce Brans–Dicke theory, the first viable alternative theory with a clear physical motivation,
- 1960 – Ivor M. Robinson and Andrzej Trautman discover the Robinson-Trautman null dust solution[59]
- 1960 – Robert Pound and Glen Rebka test the gravitational redshift predicted by the equivalence principle to approximately 1%
- 1961 – Pascual Jordan and Jürgen Ehlers develop the kinematic decomposition of a timelike congruence,
- 1961 – Robert Dicke, Peter Roll, and R. Krotkov refine the Eötvös experiment to an accuracy of 10-11,[60][61]
- 1962 – Roger Penrose and Ezra T. Newman introduce the Newman–Penrose formalism,
- 1962 – Ehlers and Wolfgang Kundt classify the symmetries of Pp-wave spacetimes,
- 1962: –Joshua Goldberg and Rainer K. Sachs prove the Goldberg–Sachs theorem.[62]
- 1962 – Ehlers introduces Ehlers transformations, a new solution generating method,
- 1962 – Richard Arnowitt, Stanley Deser, and Charles W. Misner introduce the ADM reformulation and global hyperbolicity,
- 1962 – Yvonne Choquet-Bruhat on Cauchy problem and global hyperbolicity,
- 1962 – Istvan Ozsvath and Englbert Schücking rediscover the circularly polarized monochromomatic gravitational wave,
- 1962 – Hans Adolph Buchdahl discovers Buchdahl's theorem,
- 1962 – Hermann Bondi introduces Bondi mass,
- 1962 - Hermann Bondi, M. G. van der Burg, A. W. Metzner, and Rainer K. Sachs introduce the asymptotic symmetry group of asymptotically flat, Lorentzian spacetimes at null (i.e., light-like) infinity.
- 1963 – Roy Kerr discovers the Kerr vacuum solution of Einstein's field equations,[63]
- 1963 – Redshifts of 3C 273 and other quasars show they are very distant; hence very luminous,
- 1963 – Newman, T. Unti and L.A. Tamburino introduce the NUT vacuum solution,
- 1963 – Roger Penrose introduces Penrose diagrams and Penrose limits,
- 1963 – First Texas Symposium on Relativistic Astrophysics held in Dallas, 16–18 December,
- 1964 – R. W. Sharp and Misner introduce the Misner–Sharp mass,
- 1964 – Hong-Yee Chiu coins the term 'quasar' for quasi-stellar radio sources.[64]
- 1964 – Irwin Shapiro predicts a gravitational time delay of radiation travel as a test of general relativity
- 1965 – Roger Penrose proves first of the singularity theorems.[65]
- 1965 – Newman and others discover the Kerr–Newman electrovacuum solution,
- 1965 – Penrose discovers the structure of the light cones in gravitational plane wave spacetimes,
- 1965 – Kerr and Alfred Schild introduce Kerr-Schild spacetime,
- 1965 – Subrahmanyan Chandrasekhar determines a stability criterion,
- 1965 – Arno Penzias and Robert Wilson discover the cosmic microwave background radiation,
- 1965 – Joseph Weber puts the first Weber bar gravitational wave detector into operation
- 1966 – Sachs and Ronald Kantowski discover the Kantowski-Sachs dust solution.
- 1967 – Jocelyn Bell and Antony Hewish discover pulsars.[66]
- 1967 – Robert H. Boyer and R. W. Lindquist introduce Boyer–Lindquist coordinates for the Kerr vacuum.
- 1967 – Bryce DeWitt publishes on canonical quantum gravity,
- 1967 – Werner Israel proves the no-hair theorem,[67] and the converse of Birkhoff's theorem.[68]
- 1967 – Kenneth Nordtvedt develops PPN formalism,
- 1967 – Mendel Sachs publishes factorization of Einstein's field equations,
- 1967 – Hans Stephani discovers the Stephani dust solution,
- 1968 – F. J. Ernst discovers the Ernst equation,
- 1968 – B. Kent Harrison discovers the Harrison transformation, a solution-generating method,
- 1968 – Brandon Carter solves the geodesic equations for Kerr–Newmann electrovacuum with Carter's constant.[69]
- 1968 – Hugo D. Wahlquist discovers the Wahlquist fluid,
- 1968 – Irwin Shapiro presents the first detection of the Shapiro delay
- 1968 – Kenneth Nordtvedt studies a possible violation of the weak equivalence principle for self-gravitating bodies and proposes a new test of the weak equivalence principle based on observing the relative motion of the Earth and Moon in the Sun's gravitational field
- 1969 – William B. Bonnor introduces the Bonnor beam,
- 1969 – Joseph Weber reports observation of gravitational waves[70] a claim now generally discounted.[71][72]
- 1969 – Penrose proposes the (weak) cosmic censorship hypothesis and the Penrose process,[73]
- 1969 – Misner introduces the mixmaster universe,
- 1965-70 – Subrahmanyan Chandrasekhar and colleagues develops the post-Newtonian expansions.[74][75][76][77][78]
- 1968-70 – Roger Penrose, Stephen Hawking, and George Ellis prove that singularities must arise in the Big Bang models.[79][80]
1970s
- 1970 – Vladimir A. Belinskiǐ, Isaak Markovich Khalatnikov, and Evgeny Lifshitz introduce the BKL conjecture,
- 1970 – Hawking and Penrose prove trapped surfaces must arise in black holes,
- 1970 – the Kinnersley-Walker photon rocket,
- 1970 – Peter Szekeres introduces colliding plane waves,
- 1971 – Stephen W. Hawking proves the area theorem for black holes.[81]
- 1971 – Peter C. Aichelburg and Roman U. Sexl introduce the Aichelburg–Sexl ultraboost,
- 1971 – Introduction of the Khan–Penrose vacuum, a simple explicit colliding plane wave spacetime,
- 1971 – Robert H. Gowdy introduces the Gowdy vacuum solutions (cosmological models containing circulating gravitational waves),
- 1971 – Cygnus X-1, the first solid black hole candidate, discovered by Uhuru satellite,
- 1971 – William H. Press discovers black hole ringing by numerical simulation,
- 1971 – Harrison and Estabrook algorithm for solving systems of PDEs,
- 1971 – James W. York introduces conformal method generating initial data for ADM initial value formulation,
- 1971 – Robert Geroch introduces Geroch group and a solution generating method,
- 1972 – Jacob Bekenstein proposes that black holes have a non-decreasing entropy which can be identified with the area,[82]
- 1972 – Sachs introduces optical scalars and proves peeling theorem,
- 1972 – Rainer Weiss proposes concept of interferometric gravitational wave detector in an unpublished manuscript.[83]
- 1972 – J. C. Hafele and R. E. Keating perform Hafele–Keating experiment,
- 1972 – Richard H. Price studies gravitational collapse with numerical simulations,
- 1972 – Saul Teukolsky derives the Teukolsky equation,
- 1972 – Yakov B. Zel'dovich predicts the transmutation of electromagnetic and gravitational radiation,
- 1973 – P. C. Vaidya and L. K. Patel introduce the Kerr–Vaidya null dust solution,
- 1972 – Carter, Hawking and James M. Bardeen propose the four laws of black hole mechanics,[84]
- 1973 – Publication by Charles W. Misner, Kip S. Thorne and John A. Wheeler of the treatise Gravitation, the first modern textbook on general relativity,
- 1973 – Publication by Stephen W. Hawking and George Ellis of the monograph The Large Scale Structure of Space-Time,
- 1973 – Robert Geroch introduces the GHP formalism,
- 1973 – Homer Ellis obtains the Ellis drainhole,[85] the first traversable wormhole.
- 1974 – Russell Hulse and Joseph Hooton Taylor, Jr. discover the Hulse–Taylor binary pulsar,
- 1974 – James W. York and Niall Ó Murchadha present the analysis of the initial value formulation and examine the stability of its solutions,
- 1974 – R. O. Hansen introduces Hansen–Geroch multipole moments,
- 1974: –Tullio Regge introduces the Regge calculus,
- 1974 – Stephen Hawking discovers Hawking radiation.[86][87]
- 1974 – Stephen Hawking shows that the area of a black hole is proportional to its entropy, as previous conjectured by Jacob Bekenstein.[88]
- 1975 – Chandrasekhar and Steven Detweiler compute quasinormal modes,
- 1975 – Szekeres and D. A. Szafron discover the Szekeres–Szafron dust solutions,
- 1976 – Penrose introduces Penrose limits (every null geodesic in a Lorentzian spacetime behaves like a plane wave),
- 1976 – Gravity Probe A experiment confirmed slowing the flow of time caused by gravity matching the predicted effects to an accuracy of about 70 parts per million.
- 1976 – Robert Vessot and Martin Levine use a hydrogen maser clock on a Scout D rocket to test the gravitational redshift predicted by the equivalence principle to approximately 0.007%
- 1978 – Penrose introduces the notion of a thunderbolt,
- 1978 – Belinskiǐ and Zakharov show how to solve Einstein's field equations using the inverse scattering transform; the first gravitational solitons,
- 1979 – Dennis Walsh, Robert Carswell, and Ray Weymann discover the gravitationally lensed quasar Q0957+561[89]
- 1979-81 – Richard Schoen and Shing-Tung Yau prove the positive mass theorem.[90][91] Edward Witten independently proves the same thing.[92]
1980s
- 1981 – Alan Guth proposes cosmic inflation in order to solve the flatness and horizon problems.[93]
- 1982 – Joseph Taylor and Joel Weisberg show that the rate of energy loss from the binary pulsar PSR B1913+16 agrees with that predicted by the general relativistic quadrupole formula to within 5%.
- 1986 – Helmut Friedrich proves that the de Sitter spacetime is stable.[94][95]
- 1986 – Bernard Schutz shows that cosmic distances can be determined using sources of gravitational waves without references to the cosmic distance ladder.[96] Standard-siren astronomy is born.
- 1988 – Mike Morris, Kip Thorne, and Yurtsever Ulvi obtain the Morris-Thorne wormhole.[97] Morris and Thorne argue for its pedagogical value.[98]
1990s
- 1993 – Demetrios Christodoulou and Sergiu Klainerman prove the non-linear stability of the Minkowski spacetime.[99][95]
- 1995 – John F. Donoghue show that general relativity is a quantum effective field theory.[100] This framework could be used to analyze binary systems observed by gravitational-wave observatories.[101]
- 1995 – Hubble Deep Field image taken,[102] It is a landmark in the study of cosmology.
- 1996-98 – RELIKT-1 and COBE identify anisotropy in the cosmic microwave background.[103][104]
- 1998-99 – Scientists discover that the expansion of the Universe is accelerating.[105][106]
- 1999 – Alessandra Buonanno and Thibault Damour introduce the effective one-body formalism.[107] This was later used to analyze data collected by gravitational-wave observatories.[108]
2000s
- 2002 – First data collection of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
- 2005 – Daniel Holz and Scott Hughes coin the term "standard sirens."[109]
- 2009 – Gravity Probe B experiment verifies the geodetic effect to 0.5%.[110][111]
2010s
- 2012 – Hubble Ultra-Deep Field image released. It was created using data collected by the Hubble Space Telescope between 2003-2004.[112]
- 2013 – NuSTAR and XMM-Newton measure the spin of the supermassive black hole at the center of the galaxy NGC 1365.[113]
- 2015 – Advanced LIGO reports the first direct detections of gravitational waves, GW150914[114] and GW151226,[115] mergers of stellar-mass black holes. Gravitational-wave astronomy is born.
- 2017 – Advanced LIGO and Fermi Gamma-ray Space Telescope constrain the difference between the speed of gravity and the speed of light to 10−15 with GW170817, a neutron-star merger.[116] This marks the first time electromagnetic and gravitational waves are detected from a single source.[117]
- 2017 – Multi-messenger astronomy reveals neutron-star mergers to be responsible for the nucleosynthesis of some heavy elements,[118][119][120][121] such as strontium,[122] via the rapid-neutron capture or r-process.[123]
- 2017 – MICROSCOPE satellite experiment verifies the principle of equivalence to 10−15.[124][125]
- 2017 – Scientists begin using gravitational-wave sources as "standard sirens" to measure the Hubble constant, finding its value to be broadly in line with the best estimates of the time.[126][127] Refinements of this technique will help resolve discrepancies between the different methods of measurements.[128]
- 2017 – Neutron Star Interior Composition Explorer (NICER) arrives on the International Space Station.[66]
- 2017-18 – Georgios Moschidis proves the instability of the anti-de Sitter spacetime.[95]
- 2018 – Final paper by the Planck satellite collaboration.[129] Planck operated between 2009 and 2013.
- 2018 – Mihalis Dafermos and Jonathan Luk disprove the strong cosmic censorship hypothesis for the Cauchy horizon of a uncharged, rotating black hole.[130]
- 2018 – Advanced LIGO-VIRGO collaboration constrains equations of state for a neutron star using GW170817.[131][132]
- 2018 – Kris Pardo, Maya Fishbach, Daniel Holz, and David Spergel limit the number of spacetime dimensions through which gravitational waves can propagate to 3 + 1, in line with general relativity and ruling out models that allow for "leakage" to higher dimensions of space.[133][134] Analyses of GW170817 have also ruled out many other alternatives to general relativity,[135][136][137] and proposals for dark energy.[138][139][140][141][142]
- 2019 – Event Horizon Telescope (EHT) images the shadow of supermassive black hole M87*.[143]
- 2019 – Advanced LIGO and VIRGO detect GW190814, the collision of a 26-solar-mass black hole and a 2.6-solar-mass object, either an extremely heavy neutron star or a very light black hole.[144][145] This is the largest mass gap seen in a gravitational-wave source to-date.
2020s
- 2022 – EHT releases an image of Sagittarius A*, the central supermassive black hole of the Milky Way.[146][147]
- 2022 – James Webb Space Telescope (JWST) publishes its first image, a deep-field photograph of the SMACS 0723 galaxy cluster.[148]
- 2022 – Neil Gehrels Swift Observatory detects GRB 221009A, the brightest gamma-ray burst recorded.[149][150][151]
- 2022 – JWST identifies several candidate high-redshift objects, corresponding to just a few hundred million years after the Big Bang.[152][153]
References
- Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN 0-07-035048-5.
- Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 – via Internet Archive.
- Sagan, Carl; Druyan, Ann (1997). Comet. New York: Random House. pp. 66–67. ISBN 978-0-3078-0105-0.
- Woolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode:1993QJRAS..34....1W. For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
- Cavendish, Henry (1798). "Experiments to Determine the Density of Earth". Philosophical Transactions of the Royal Society. 88: 469–526. doi:10.1098/rstl.1798.0022. JSTOR 106988.
- Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics. 55 (3): 210–213. Bibcode:1987AmJPh..55..210C. doi:10.1119/1.15214.
- Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). "One Hundred Years of the Eötvös Experiment". Archived from the original on October 22, 2012.
- Gerber, P. (1917) [1902]. "Die Fortpflanzungsgeschwindigkeit der Gravitation". Annalen der Physik. 52 (4): 415–444. Bibcode:1917AnP...357..415G. doi:10.1002/andp.19173570404. (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
- Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper" [On the Electrodynamics of Moving Bodies] (PDF). Annalen der Physik. Series 4. 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.
- Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" [Does the Inertia of a Body Depend upon its Energy Content?] (PDF). Annalen der Physik. Series 4. 18 (13): 639–641. Bibcode:1905AnP...323..639E. doi:10.1002/andp.19053231314. S2CID 122309633.
- Einstein, Albert (1935). "Elementary derivation of the equivalence of mass and energy" (PDF). Bulletin of the American Mathematical Society. 41 (4): 223–230. doi:10.1090/S0002-9904-1935-06046-X.
- Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the Relativity Principle and the Conclusions Drawn from It] (PDF). Jahrbuch der Radioaktivität (4): 411–462.
- Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
- Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie" [Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode:1915SPAW.......831E.
- Einstein, Albert (1916). "Grundlage der allgemeinen Relativitätstheorie" [The Foundation of the General Theory of Relativity] (PDF). Annalen der Physik. 4 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702.
- Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
- Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie" [On the Gravitational Field of a Point Mass According to Einstein's Theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
- Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
- Levy, Adam (January 11, 2021). "How black holes morphed from theory to reality". Knowable Magazine. doi:10.1146/knowable-010921-1. Retrieved 25 March 2022.
- Eisenstaedt, “The Early Interpretation of the Schwarzschild Solution,” in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
- Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" [Approximate Integration of the Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 688–696. Bibcode:1916SPAW.......688E.
- de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. Bibcode:1916MNRAS..77..155D. doi:10.1093/mnras/77.2.155.
- Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
- The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR 6491
- Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society. 77: 16–35. Bibcode:1916MNRAS..77...16E. doi:10.1093/mnras/77.1.16.
- Einstein, Albert (1918). "Gravitationswellen" [Gravitational Waves]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 154–167.
- Holz, Daniel; Hughes, Scott; Bernard, Schultz (December 2018). "Measuring cosmic distances with standard sirens". Physics Today. 71 (12): 34. Bibcode:2018PhT....71l..34H. doi:10.1063/PT.3.4090. S2CID 125545290.
- Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
- Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
- Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
- Dyson, F.W.; Eddington, A.S.; Davidson, C.R. (1920). "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919". Philosophical Transactions of the Royal Society A. 220 (571–581): 291–333. Bibcode:1920RSPTA.220..291D. doi:10.1098/rsta.1920.0009.
- Kennefick, Daniel (1 March 2009). "Testing relativity from the 1919 eclipse – a question of bias". Physics Today. 62 (3): 37–42. Bibcode:2009PhT....62c..37K. doi:10.1063/1.3099578.
- David Kaiser, "How Politics Shaped General Relativity", New York Times, November 6, 2015.
- Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) (in German): 966–972. Bibcode:1921SPAW.......966K.
- Friedman, Alexander (December 1922). "Über die Krümmung des Raumes". Zeitschrift für Physik (in German). 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID 125190902.
- Translated in: Friedmann, Alexander (December 1999). "On the Curvature of Space". General Relativity and Gravitation. 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID 122950995.
- Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences. 15 (3): 168–173. Bibcode:1929PNAS...15..168H. doi:10.1073/pnas.15.3.168. PMC 522427. PMID 16577160. Archived from the original on 1 October 2006. Retrieved 28 November 2019.
- "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
- Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710. S2CID 119906976.
- Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal. 74: 81–82. Bibcode:1931ApJ....74...81C. doi:10.1086/143324.
- "Obituary: Georges Lemaitre". Physics Today. 19 (9): 119–121. September 1966. doi:10.1063/1.3048455.
- Lemaître, Georges; Eddington, Stanley (March 1931). "The Expanding Universe". Monthly Notices of the Royal Astronomical Society. 91 (5): 490–501. doi:10.1093/mnras/91.5.490.
- Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
- Einstein; and De Sitter (1932). "On the relation between the expansion and the mean density of the universe". Proceedings of the National Academy of Sciences. 18 (3): 213–214. Bibcode:1932PNAS...18..213E. doi:10.1073/pnas.18.3.213. PMC 1076193. PMID 16587663.
- A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935).
- Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science. 84 (2188): 506–507. Bibcode:1936Sci....84..506E. doi:10.1126/science.84.2188.506. PMID 17769014.
- F. Zwicky (1937). "Nebulae as Gravitational lenses" (PDF). Physical Review. 51 (4): 290. Bibcode:1937PhRv...51..290Z. doi:10.1103/PhysRev.51.290. Archived (PDF) from the original on 2013-12-26.
- Einstein, Albert & Rosen, Nathan (1937). "On Gravitational waves". Journal of the Franklin Institute. 223: 43–54. Bibcode:1937FrInJ.223...43E. doi:10.1016/S0016-0032(37)90583-0.
- Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics. 39 (1): 65–100. doi:10.2307/1968714. JSTOR 1968714.
- Lee, S.; Brown, G. E. (2007). "Hans Albrecht Bethe. 2 July 1906 -- 6 March 2005: Elected ForMemRS 1957". Biographical Memoirs of Fellows of the Royal Society. 53: 1. doi:10.1098/rsbm.2007.0018.
- Oppenheimer, J.R.; Serber, Robert (1938). "On the Stability of Stellar Neutron Cores". Physical Review. 54 (7): 540. Bibcode:1938PhRv...54..540O. doi:10.1103/PhysRev.54.540.
- Oppenheimer, J.R.; Volkoff, G.M. (1939). "On Massive Neutron Cores" (PDF). Physical Review. 55 (4): 374–381. Bibcode:1939PhRv...55..374O. doi:10.1103/PhysRev.55.374. Archived (PDF) from the original on January 16, 2014. Retrieved January 15, 2014.
- Oppenheimer, J.R.; Snyder, H. (1939). "On Continued Gravitational Contraction". Physical Review. 56 (5): 455–459. Bibcode:1939PhRv...56..455O. doi:10.1103/PhysRev.56.455.
- Alpher, R. A.; Herman, R. C. (1948). "On the Relative Abundance of the Elements". Physical Review. 74 (12): 1737–1742. Bibcode:1948PhRv...74.1737A. doi:10.1103/PhysRev.74.1737.
- Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe". Nature. 162 (4124): 774–775. Bibcode:1948Natur.162..774A. doi:10.1038/162774b0. S2CID 4113488.
- Lanczos, Cornelius (1949-07-01). "Lagrangian Multiplier and Riemannian Spaces". Reviews of Modern Physics. American Physical Society (APS). 21 (3): 497–502. Bibcode:1949RvMP...21..497L. doi:10.1103/revmodphys.21.497. ISSN 0034-6861.
- Gödel, K., "An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation", Rev. Mod. Phys. 21, 447, published July 1, 1949.
- Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002) p. xxv–xxvi.Link PDF (page 17-18)
- Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society. 64: 261–284. arXiv:1707.00139. doi:10.1098/rsbm.2017.0022. ISSN 0080-4606. S2CID 67365148.
- Robinson, Ivor; Trautman, A. (1960). "Spherical Gravitational Waves". Physical Review Letters. Cdsads.u-strasbg.fr. 4 (8): 431. Bibcode:1960PhRvL...4..431R. doi:10.1103/PhysRevLett.4.431. Retrieved 2012-07-20.
- Roll, P.G; Krotkov, R; Dicke, R.H (1964). "The equivalence of inertial and passive gravitational mass". Annals of Physics. Elsevier BV. 26 (3): 442–517. Bibcode:1964AnPhy..26..442R. doi:10.1016/0003-4916(64)90259-3. ISSN 0003-4916.
- Dicke, Robert H. (December 1961). "The Eötvös Experiment". Scientific American. 205 (6): 84–95. Bibcode:1961SciAm.205f..84D. doi:10.1038/scientificamerican1261-84.
- Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation. 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. S2CID 122155922.; originally published in Acta Phys. Pol. 22, 13–23 (1962).
- Kerr, Roy P. (1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". Physical Review Letters. 11 (5): 237–238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237.
- Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today. 17 (5): 21–34. Bibcode:1964PhT....17e..21C. doi:10.1063/1.3051610.
So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
- Penrose, Roger (1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (57): 57–59. Bibcode:1965PhRvL..14...57P. doi:10.1103/PhysRevLett.14.57.
- Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American.
- Israel, Werner (1967). "Event Horizons in Static Vacuum Space-Times". Phys. Rev. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776.
- Israel, Werner (25 December 1967). "Event Horizons in Static Vacuum Space-Times". Physical Review Journals Archive. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776 – via American Physical Society.
- Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review. 174 (5): 1559–1571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559.
- "Making Waves". TERP. 2016-08-18. Retrieved 2016-11-07.
- Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science.
- David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
- Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento. Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
- Chandrasekhar, S. (1965). "The post-Newtonian equations of hydrodynamics in General Relativity". The Astrophysical Journal. 142: 1488. Bibcode:1965ApJ...142.1488C. doi:10.1086/148432.
- Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal. 147: 334. Bibcode:1967ApJ...147..334C. doi:10.1086/149003.
- Chandrasekhar, S. (1969). "Conservation laws in general relativity and in the post-Newtonian approximations". The Astrophysical Journal. 158: 45. Bibcode:1969ApJ...158...45C. doi:10.1086/150170.
- Chandrasekhar, S.; Nutku, Y. (1969). "The second post-Newtonian equations of hydrodynamics in General Relativity". Relativistic Astrophysics. 86: 55. Bibcode:1969ApJ...158...55C. doi:10.1086/150171.
- Chandrasekhar, S.; Esposito, F.P. (1970). "The 2½-post-Newtonian equations of hydrodynamics and radiation reaction in General Relativity". The Astrophysical Journal. 160: 153. Bibcode:1970ApJ...160..153C. doi:10.1086/150414.
- Hawking, Stephen W.; Ellis, George F. R. (April 1968). "The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe". The Astrophysical Journal. 152: 25. Bibcode:1968ApJ...152...25H. doi:10.1086/149520.
- Hawking, Stephen W.; Penrose, Roger (27 January 1970). "The Singularities of Gravitational Collapse and Cosmology". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 314 (1519): 529–548. Bibcode:1970RSPSA.314..529H. doi:10.1098/rspa.1970.0021.
- Hawking, Stephen (October 1971). "Black Holes in General Relativity". Communications in Mathematical Physics. 25 (2): 152–166. doi:10.1007/BF01877517. S2CID 121527613.
- Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID 120254309.
- Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
- Bardeen, John M.; Carter, Brandon; Hawking, Stephen (June 1973). "The four laws of black hole mechanics". Communications in Mathematical Physics. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007/BF01645742. S2CID 54690354.
- H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161.
- Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.
- Hawking, Stephen (March 1, 1974). "Black Hole Explosions?". Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. S2CID 4290107.
- Hawking, Stephen (1975). "Particle Creation by Black Holes". Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID 55539246.
- D.Walsh, R.F.Carswell, R.J.Weymann (31 May 1979). "0957 + 561 A, B: twin quasistellar objects or gravitational lens?" (PDF). Nature. 279 (5712): 381–384. doi:10.1038/279381a0. PMID 16068158. S2CID 2142707.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - Schoen, Robert; Yau, Shing-Tung (1979). "On the proof of the positive mass conjecture in general relativity". Communications in Mathematical Physics. 65 (1): 45. Bibcode:1979CMaPh..65...45S. doi:10.1007/BF01940959. S2CID 54217085.
- Schoen, Robert; Yau, Shing-Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics. 79 (2): 231. Bibcode:1981CMaPh..79..231S. doi:10.1007/BF01942062. S2CID 59473203.
- Witten, Edward (1981). "A new proof of the positive energy theorem". Communications in Mathematical Physics. 80 (3): 381–402. Bibcode:1981CMaPh..80..381W. doi:10.1007/BF01208277. S2CID 1035111.
- Guth, Alan (15 January 1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Physical Review D. 23 (2): 347–356. Bibcode:1981PhRvD..23..347G. doi:10.1103/PhysRevD.23.347.
- Friedrich, Helmut (1986). "On the existence of -geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics. 107 (4): 587–609. Bibcode:1986CMaPh.107..587F. doi:10.1007/BF01205488. S2CID 121761845.
- Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. Retrieved January 6, 2023.
- Schultz, Bernard (1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl:11858/00-001M-0000-0013-73C1-2. S2CID 4327285.
- Morris, Mike; Thorne, Kip; Yurtsever, Ulvi (1986). "Wormholes, Time Machines, and the Weak Energy Condition". Physical Review Letters. 61 (1446): 1446–1449. doi:10.1103/PhysRevLett.61.1446. PMID 10038800.
- Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi:10.1119/1.15620.
- Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN 0-691-08777-6.
- Donoghue, John F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Physical Review D. 50 (3874): 3874–3888. arXiv:gr-qc/9405057. Bibcode:1994PhRvD..50.3874D. doi:10.1103/PhysRevD.50.3874. PMID 10018030. S2CID 14352660.
- Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D. 73 (10). arXiv:hep-th/0409156. doi:10.1103/PhysRevD.73.104029. S2CID 54188791.
- "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. Retrieved January 12, 2009.
- Smoot, G. F.; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters. 396 (1): L1–L5. Bibcode:1992ApJ...396L...1S. doi:10.1086/186504. S2CID 120701913.
- Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters. 464: L1–L4. arXiv:astro-ph/9601067. Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID 18144842.
- Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal. 116 (3): 1009–1038. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID 15640044.
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J. (1999). "Measurements of Omega and Lambda from 42 High-Redshift Supernovae". The Astrophysical Journal. 517 (2): 565–586. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221. S2CID 118910636.
- Buonanno, A.; Damour, T. (1999-03-08). "Effective one-body approach to general relativistic two-body dynamics". Physical Review D. American Physical Society (APS). 59 (8): 084006. arXiv:gr-qc/9811091. Bibcode:1999PhRvD..59h4006B. doi:10.1103/physrevd.59.084006. ISSN 0556-2821. S2CID 14951569.
- Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016-06-07). "GW150914: First results from the search for binary black hole coalescence with Advanced LIGO". Physical Review D. 93 (12): 122003. arXiv:1602.03839. Bibcode:2016PhRvD..93l2003A. doi:10.1103/physrevd.93.122003. ISSN 2470-0010. PMC 7430253. PMID 32818163. S2CID 217628912.
- Holz, Daniel; Hughes, Scott (2005). "Using Gravitational-Wave Standard Sirens". Astrophysical Journal. 629 (1): 15–22. arXiv:astro-ph/0504616. Bibcode:2005ApJ...629...15H. doi:10.1086/431341. hdl:1721.1/101190. S2CID 12017349.
- Everitt, C.W.F.; Parkinson, B.W. (2009). "Gravity Probe B Science Results—NASA Final Report" (PDF). Retrieved 2 May 2009.
- Everitt; et al. (2011). "Gravity Probe B: Final Results of a Space Experiment to Test General Relativity". Physical Review Letters. 106 (22): 221101. arXiv:1105.3456. Bibcode:2011PhRvL.106v1101E. doi:10.1103/PhysRevLett.106.221101. PMID 21702590. S2CID 11878715.
- "Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe". NASA. September 25, 2012. Retrieved September 26, 2012.
- "NASA's NuSTAR Helps Solve Riddle of Black Hole Spin". NASA. 27 February 2013. Retrieved 3 March 2013.
This article incorporates text from this source, which is in the public domain.
- Naeye, Robert (11 February 2016). "Gravitational Wave Detection Heralds New Era of Science". Sky and Telescope. Retrieved 11 February 2016.
- Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:1606.04855. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID 27367379. S2CID 118651851.
- Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (2017). "Gravitational waves and gamma-rays from a binary neutron star merger: GW 170817 and GRB 170817A". The Astrophysical Journal Letters. 848 (2): L13. arXiv:1710.05834. Bibcode:2017ApJ...848L..13A. doi:10.3847/2041-8213/aa920c.
- Abbott, B. P.; et al. (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger". The Astrophysical Journal Letters. 848 (2). L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9. S2CID 217162243.
- Cho A (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. doi:10.1126/science.aar2149.
- Landau E, Chou F, Washington D, Porter M (16 October 2017). "NASA missions catch first light from a gravitational-wave event". NASA. Retrieved 16 October 2017.
- Johnson, Jennifer (2019). "Populating the periodic table: Nucleosynthesis of the elements". Science. 363 (6426): 474–478. Bibcode:2019Sci...363..474J. doi:10.1126/science.aau9540. PMID 30705182. S2CID 59565697.
- Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (October 25, 2021). "The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers". Astrophysical Review Letters. 920 (1): L3. arXiv:2107.02714. Bibcode:2021ApJ...920L...3C. doi:10.3847/2041-8213/ac26c6. S2CID 238198587.
- Watson, Darach; et al. (2019). "Identification of strontium in the merger of two neutron stars". Nature. 574 (7779): 497–500. arXiv:1910.10510. Bibcode:2019Natur.574..497W. doi:10.1038/s41586-019-1676-3. PMID 31645733. S2CID 204837882.
- Curtis, Sanjana (January 2023). "How Star Collisions Forge the Universe's Heaviest Elements". Scientific American.
- Touboul, Pierre; et al. (8 December 2017). "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle". Physical Review Letters. 119 (23). 231101. arXiv:1712.01176. Bibcode:2017PhRvL.119w1101T. doi:10.1103/PhysRevLett.119.231101. PMID 29286705. S2CID 6211162.
- Brax, Philippe (September 14, 2022). "Satellite Confirms the Principle of Falling". Physics. American Physical Society (APS). 15 (94): 94. Bibcode:2022PhyOJ..15...94B. doi:10.1103/Physics.15.94. S2CID 252801272.
- LIGO-VIRGO Collaboration; 1M2H Collaboration; et al. (2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.
- Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (November 2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.
- Chen HY, Fishbach M, Holz DE (October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203.
- Akrami, Y.; et al. (Planck Collaboration) (2020). "Planck 2018 results. I. Overview, and the comological legacy of Planck". Astronomy & Astrophysics. 641: A1. arXiv:1807.06205. Bibcode:2020A&A...641A...1P. doi:10.1051/0004-6361/201833880. S2CID 119185252.
- Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine. Retrieved 29 March 2020.
- Advanced LIGO-VIRGO Collaboration (2018). "GW170817: Measurements of Neutron Star Radii and Equation of State". Physical Review Letters. 121 (161101): 161101. arXiv:1805.11581. Bibcode:2018PhRvL.121p1101A. doi:10.1103/PhysRevLett.121.161101. PMID 30387654. S2CID 53235598.
- Sokol, Joshua (June 5, 2018). "Gravitational Waves Reveal the Hearts of Neutron Stars". Scientific American.
- Pardo, Kris; Fishbach, Maya; Holz, Daniel E.; Spergel, David N. (2018). "Limits on the number of spacetime dimensions from GW170817". Journal of Cosmology and Astroparticle Physics. 2018 (7): 048. arXiv:1801.08160. Bibcode:2018JCAP...07..048P. doi:10.1088/1475-7516/2018/07/048. S2CID 119197181.
- Lerner, Louise (September 13, 2018). "Gravitational waves provide dose of reality about extra dimensions". UChicago News. Retrieved January 3, 2023.
- Lombriser L, Lima N (2017). "Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure". Phys. Lett. B. 765: 382–385. arXiv:1602.07670. Bibcode:2017PhLB..765..382L. doi:10.1016/j.physletb.2016.12.048. S2CID 118486016.
- Bettoni D, Ezquiaga JM, Hinterbichler K, Zumalacárregui M (14 April 2017). "Speed of gravitational waves and the fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv:1608.01982. Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010. S2CID 119186001.
- Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (December 2017). "Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A". Physical Review Letters. 119 (25): 251301. arXiv:1710.06394. Bibcode:2017PhRvL.119y1301B. doi:10.1103/PhysRevLett.119.251301. PMID 29303333. S2CID 36160359.
- Creminelli P, Vernizzi F (December 2017). "Dark Energy after GW170817 and GRB170817A". Physical Review Letters. 119 (25): 251302. arXiv:1710.05877. Bibcode:2017PhRvL.119y1302C. doi:10.1103/PhysRevLett.119.251302. PMID 29303308. S2CID 206304918.
- Boran S, Desai S, Kahya E, Woodard R (2018). "GW 170817 falsifies dark matter emulators". Phys. Rev. D. 97 (4): 041501. arXiv:1710.06168. Bibcode:2018PhRvD..97d1501B. doi:10.1103/PhysRevD.97.041501. S2CID 119468128.
- Ezquiaga JM, Zumalacárregui M (December 2017). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv:1710.05901. Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304. PMID 29303304. S2CID 38618360.
- Sakstein J, Jain B (December 2017). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters. 119 (25): 251303. arXiv:1710.05893. Bibcode:2017PhRvL.119y1303S. doi:10.1103/PhysRevLett.119.251303. PMID 29303345. S2CID 39068360.
- Kitching, Thomas (December 12, 2017). "How crashing neutron stars killed off some of our best ideas about what 'dark energy' is". The Conversation. Retrieved January 5, 2023.
- Event Horizon Telescope Collaboration (April 10, 2019). "First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole". Astrophysical Review Letters. 875 (1): L6. arXiv:1906.11243. Bibcode:2019ApJ...875L...6E. doi:10.3847/2041-8213/ab1141. S2CID 145969867.
- Staff (2020). "GW190814 Factsheet - Lowest mass ratio to date - Strongest evidence of higher order modes" (PDF). LIGO. Retrieved 26 June 2020.
- Abbott, R.; et al. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters. 896 (2): L44. arXiv:2006.12611. Bibcode:2020ApJ...896L..44A. doi:10.3847/2041-8213/ab960f.
- Bower, Geoffrey C. (May 2022). "Focus on First Sgr A* Results from the Event Horizon Telescope". The Astrophysical Journal. Retrieved May 12, 2022.
- Overbye, Dennis (May 12, 2022). "The Milky Way's Black Hole Comes to Light". The New York Times. ISSN 0362-4331. Retrieved May 12, 2022.
- Garner, Rob (July 12, 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Retrieved January 2, 2023.
- Dichiara, S.; Gropp, J. D.; Kennea, J. A.; Kuin, N. P. M.; Lien, A. Y.; Marshall, F. E.; Tohuvavohu, A.; Williams, M. A.; Neil Gehrels Swift Observatory Team (2022). "Swift J1913.1+1946 a new bright hard X-ray and optical transient". The Astronomer's Telegram. 15650: 1. Bibcode:2022ATel15650....1D.
- Plait, Phil (October 21, 2022). "The Brightest Gamma-Ray Burst Ever Recorded Rattled Earth's Atmosphere". Scientific American.
- Reddy, Francis (13 October 2022). "NASA's Swift, Fermi Missions Detect Exceptional Cosmic Blast". NASA’s Goddard Space Flight Center.
- Adams, N.J.; et al. (January 2023). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society. 518 (3): 4755–4766. arXiv:2207.11217. doi:10.1093/mnras/stac3347. Retrieved 2 January 2023.
- Yan, Haojing; et al. (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters. 942 (L9): 20. arXiv:2207.11558. Bibcode:2023ApJ...942L...9Y. doi:10.3847/2041-8213/aca80c.
External links
- Timeline of relativity and gravitation (Tomohiro Harada, Department of Physics, Rikkyo University)
- Timeline of General Relativity and Cosmology from 1905
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.