List of quantum processors

This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as Quantum volume, Randomized benchmarking or CLOPS.[1]

Circuit-based quantum processors

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

ManufacturerName/Codename/DesignationArchitectureLayoutSocketFidelityQubits (Logical)Release dateQuantum Volume
RIKEN RIKENSuperconductingN/AN/AN/A64 qb 2023
GoogleN/ASuperconductingN/AN/A99.5%[2]20 qb2017
GoogleN/ASuperconducting7×7 latticeN/A99.7%[2]49 qb[3]Q4 2017 (planned)
GoogleBristleconeSuperconducting transmon6×12 latticeN/A99% (readout)
99.9% (1 qubit)
99.4% (2 qubits)
72 qb[4][5]March 5, 2018
GoogleSycamoreSuperconducting transmon9×6 latticeN/AN/A53 qb effective2019
USTCJiuzhangPhotonicsN/AN/AN/A76 qb[6][7]2020
USTC ZuchongzhiSuperconductingN/AN/AN/A62 qb[8] 2020
Quandela Ascella Photonics N/A N/A 98.8% (1 qubit)
88.1% (2 qubits)
86.0% (3 qubits)
6 qb[9] 2022[10]
Xanadu Borealis[11] Photonics N/A N/A N/A 216 qb[11] 2022[11]
Xanadu X8 [12] Photonics N/A N/A N/A 8 qb 2020
Xanadu X12 Photonics N/A N/A N/A 12 qb 2020[12]
Xanadu X24 Photonics N/A N/A N/A 24 qb 2020[12]
IBMIBM Q 5 TenerifeSuperconductingbow tieN/A99.897% (average gate)
98.64% (readout)
5 qb2016[2]
IBM IBM Q 5 Yorktown Superconducting bow tie N/A 99.545% (average gate)
94.2% (readout)
5 qb
IBM IBM Q 14 Melbourne Superconducting N/A N/A 99.735% (average gate)
97.13% (readout)
14 qb
IBMIBM Q 16 RüschlikonSuperconducting2×8 latticeN/A99.779% (average gate)
94.24% (readout)
16 qb[13]May 17, 2017
(Retired: 26 September 2018)[14]
IBMIBM Q 17SuperconductingN/AN/AN/A17 qb[13]May 17, 2017
IBMIBM Q 20 TokyoSuperconducting5×4 latticeN/A99.812% (average gate)
93.21% (readout)
20 qb[15]November 10, 2017
IBM IBM Q 20 Austin Superconducting 5×4 lattice N/A N/A 20 qb (Retired: 4 July 2018)[14]
IBMIBM Q 50 prototypeSuperconducting transmonN/AN/AN/A50 qb[15]
IBMIBM Q 53SuperconductingN/AN/AN/A53 qbOctober 2019
IBMIBM EagleSuperconductingN/AN/AN/A127 qbNovember 2021
IBMIBM OspreySuperconductingN/AN/AN/A433 qbNovember 2022
Intel17-Qubit Superconducting Test ChipSuperconductingN/A40-pin cross gapN/A17 qb[16][17]October 10, 2017
IntelTangle LakeSuperconductingN/A108-pin cross gapN/A49 qb[18]January 9, 2018
Rigetti 8Q Agave Superconducting N/A N/A N/A 8 qb June 4, 2018[19]
Rigetti 16Q Aspen-1 Superconducting N/A N/A N/A 16 qb November 30, 2018[19]
Rigetti19Q AcornSuperconducting transmonN/AN/AN/A19 qb[20]December 17, 2017
RigettiAspen-M-3Superconducting transmonN/AN/A99.9% (Single-qubit gates) 94.7% (Two-qubit gates CZ) 95.1% (Two-qubit gates XY)80 qb[21]December 2, 2022
IBM IBM Armonk[22] Superconducting Single Qubit N/A N/A 1 qb October 16, 2019
IBM IBM Ourense[22] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM Vigo[22] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM London[22] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Burlington[22] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Essex[22] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Athens [23] Superconducting QV32 [24] N/A N/A 5 qb
IBM IBM Belem[23] Superconducting QV16 N/A N/A 5 qb
IBM IBM Bogotá [23] Superconducting QV32 [24] N/A N/A 5 qb
IBM IBM Casablanca [23] Superconducting QV32 [24] N/A N/A 7 qb (Retired - March 2022)
IBM IBM Dublin [23] Superconducting QV64 N/A N/A 27 qb
IBM IBM Guadalupe [23] Superconducting QV32 [24] N/A N/A 16 qb
IBM IBM Kolkata Superconducting QV128 N/A N/A 27 qb
IBM IBM Lima [23] Superconducting QV8 N/A N/A 5 qb
IBM IBM Manhattan [23] Superconducting QV32 [24] N/A N/A 65 qb
IBM IBM Montreal [23] Superconducting QV128 N/A N/A 27 qb 128[25]
IBM IBM Mumbai [23] Superconducting QV128 N/A N/A 27 qb
IBM IBM Paris [23] Superconducting QV32 [24] N/A N/A 27 qb
IBM IBM Quito [23] Superconducting QV16 N/A N/A 5 qb
IBM IBM Rome [23] Superconducting QV32 [24] N/A N/A 5 qb
IBM IBM Santiago [23] Superconducting QV32 [24] N/A N/A 5 qb
IBM IBM Sydney [23] Superconducting QV32 [24] N/A N/A 27 qb
IBM IBM Toronto [23] Superconducting QV32 [24] N/A N/A 27 qb
QuTech at TU Delft Spin-2 Semiconductor spin qubits 99% (average gate)
85%(readout)[26]
2 qb 2020
QuTech at TU Delft Starmon-5 Superconducting X configuration 97% (readout)[27] 5 qb 2020
IonQ Trapped ion 32x1 chain[28] N/A 99.98% (1 qubit)
98.5-99.3% (2 qubit)[28]
32 qb
Oxford Quantum Circuits Lucy[29] Superconducting N/A 8 qb 2022
Quantinuum H1-1[30] Trapped ion 15×15 (Circuit Size) N/A 20 qb 2022 32,768[31]
Quantinuum H1-2 [30] Trapped ion N/A 12 qb 2022 4096[32]
Quantware Soprano[33] Superconducting N/A 99.9% (single-qubit gates) 5 qb July 2021
Quantware Contralto[34] Superconducting N/A 99.9% (single-qubit gates) 25 qb March 7, 2022[35]
Quantware Tenor[36] Superconducting N/A 64 qb February 23, 2023
Alpine Quantum Technologies PINE System[37] Trapped ion N/A 24 qb[38] June 7, 2021 128[39]
Atom Computing Phoenix Neutral atoms in optical lattices N/A 100 qb[40] August 10, 2021
SpinQ Triangulum Nuclear magnetic resonance N/A 3 qb[41] September 2021

Annealing quantum processors

These QPUs are based on quantum annealing.

ManufacturerName/Codename/DesignationArchitectureLayoutSocketFidelityQubitsRelease date
D-WaveD-Wave One (Rainier)SuperconductingC4 = Chimera(4,4,4)[42] = 4×4 K4,4N/AN/A128 qb11 May 2011
D-WaveD-Wave TwoSuperconductingC8 = Chimera(8,8,4)[42] = 8×8 K4,4N/AN/A512 qb2013
D-WaveD-Wave 2XSuperconductingC12 = Chimera(12,12,4)[42] = 12×12 K4,4N/AN/A1152 qb2015
D-WaveD-Wave 2000QSuperconductingC16 = Chimera(16,16,4)[42] = 16×16 K4,4N/AN/A2048 qb2017
D-WaveD-Wave AdvantageSuperconductingPegasus P16[43]N/AN/A5760 qb2020

Analog quantum processors

These QPUs are based on analog Hamiltonian simulation.

ManufacturerName/Codename/DesignationArchitectureLayoutSocketFidelityQubitsRelease date
QuEraAquilaNeutral atomsN/AN/AN/A256 qbNov 2022

See also

References

  1. Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
  2. Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. Retrieved 2017-10-18.
  3. Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. Retrieved 2017-10-18.
  4. "A Preview of Bristlecone, Google's New Quantum Processor", Research (World wide web log), Google, March 2018.
  5. Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. Retrieved 2018-06-27.
  6. Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711.
  7. December 2020, Rafi Letzter-Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world". livescience.com. Retrieved 2020-12-19.
  8. Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". PhysRevLett. 127 (18). doi:10.1103/PhysRevLett.127.180501.
  9. Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022-11-29). "High-fidelity generation of four-photon GHZ states on-chip". arXiv:2211.15626 [quant-ph].
  10. "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)". Le Monde.
  11. Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard; Helt, Lukas G.; Collins, Matthew J.; Lita, Adriana E. (June 2022). "Quantum computational advantage with a programmable photonic processor". Nature. 606 (7912): 75–81. Bibcode:2022Natur.606...75M. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMC 9159949. PMID 35650354. S2CID 249276257.
  12. "A new kind of quantum". spie.org. Retrieved 2021-01-09.
  13. "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. Retrieved 2017-10-18.
  14. "Quantum devices & simulators". IBM Q. 2018-06-05. Retrieved 2019-03-29.
  15. "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. Retrieved 10 November 2017.
  16. "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". 2017-10-10. Retrieved 2017-10-18.
  17. Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. Retrieved 2017-10-18.
  18. "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. Retrieved 2018-01-14.
  19. "QPU". Rigetti Computing. Archived from the original on 2019-05-16. Retrieved 2019-03-24.
  20. "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. Retrieved 2018-03-21.
  21. "Aspen-M-3 Quantum Processor". Retrieved 2023-02-20.
  22. "IBM Q Experience". IBM Q Experience. Retrieved 2020-01-04.
  23. IBM Quantum. https://quantum-computing.ibm.com/, 2021
  24. IBM Research Blog. https://www.ibm.com/blogs/research/2020/07/qv32-performance/, 2021
  25. Gambetta, Jay. "On the same system (IBM Q System One - Montreal) that we hit a quantum volume of 64 the team recently achieved a quantum volume of 128". Twitter. Archived from the original on 2022-10-21. Retrieved 2023-03-20.
  26. "Spin-2". Quantum Inspire. Retrieved 5 May 2021.
  27. "Starmon-5". Quantum Inspire. Retrieved 4 May 2021.
  28. arXiv:2009.11482
  29. "Lucy". Oxford Quantum Circuits. Retrieved 20 Feb 2023.
  30. "Quantinuum System Model H1 Product Data Sheet" (PDF). Oxford Quantum Circuits. Retrieved 20 Feb 2023.
  31. "Quantum Volume reaches 5 digits for the first time: 5 perspectives on what it means for quantum computing". Quantinuum. Retrieved 24 Feb 2023.
  32. "Quantinuum Announces Quantum Volume 4096 Achievement". Quantinuum. Retrieved 24 Feb 2023.
  33. "Soprano specs". Quantware. Retrieved 1 Feb 2023.
  34. "Contralto specs". Quantware. Retrieved 21 Feb 2023.
  35. "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". Quantware. Retrieved 21 Feb 2023.
  36. "Tenor specs". Quantware. Retrieved 26 Feb 2023.
  37. "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". AQT. Retrieved 21 Feb 2023.
  38. Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "A compact ion-trap quantum computing demonstrator". arXiv:2101.11390 [quant-ph].
  39. "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". AQT. Retrieved 24 Feb 2023.
  40. Barnes, Katrina; Battaglino, Peter; Et, al. (2021-10-08). "Assembly and coherent control of a register of nuclear spin qubits". arXiv:2108.04790 [quant-ph].
  41. "Triangulum3 qubits desktop NMR quantum computer". AQT. Retrieved 24 Feb 2023.
  42. Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
  43. Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.