Korarchaeota
In taxonomy, the Korarchaeota are a phylum of the Archaea.[3] The name is derived from the Greek noun koros or kore, meaning young man or young woman, and the Greek adjective archaios which means ancient.[4] They are also known as Xenarchaeota. The name is equivalent to Candidatus Korarchaeota, and they go by the name Xenarchaeota or Xenarchaea as well (Garrity & Holt, 2001).
Korarchaeota | |
---|---|
![]() | |
Scanning electron micrograph of the Obsidian Pool enrichment culture, showing Korarchaeota. | |
Scientific classification | |
Domain: | |
Kingdom: | |
Superphylum: | |
Phylum: | "Korarchaeota" Barns et al. 1996 |
Class: | "Korarchaeia" Rinke et al. 2020[1] |
Order: | "Korarchaeales" Petitjean et al. 2015[2] |
Family: | "Korarchaeaceae" Rinke et al. 2020 |
Species | |
| |
Synonyms | |
|
Taxonomy
The Korarchaeota are a phylum of the kingdom, Archaea.[5] They are thought to be a phylum that diverged relatively early in the genesis of Archaea among the deep-branching lineages.[5] Korarchaeaota, along with Thaumarchaeota, Aigarchaeota, Crenarchaeota, belong to the TACK superphylum.[6]
Three-domain analyses of obsidian pool sequences have shown that the rDNA sequences of clones pJP27 and pJP78, have about as many signature features in common with Euryarchaeota as with Crenarchaeota (8 vs.6 features).[7][8] This suggests that these lineages branch is not either of the two groups but divergent from them and evolve in a rapid way.
Species
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI).
Listed below are the known species of Korarcheota[9] Candidatus Korarchaeota
Phylogeny
Analysis of their 16S rRNA gene sequences suggests that they are a deeply branching lineage that does not belong to the main archaeal groups, Thermoproteota and Euryarchaeota.[12] Analysis of the genome of one korarchaeote that was enriched from a mixed culture revealed a number of both Crenarchaeota- and Euryarchaeota-like features and supports the hypothesis of a deep-branching ancestry.[13]
Reference species
The strain Korarchaeum cryptofilum was cultivated in an enrichment culture from a hot spring in Yellowstone National Park in USA 2008.[13] The cells are long and needleshaped, which gave the species its name, alluding to its "cryptical filaments". This organism lacks the genes for purine nucleotide biosynthesis and thus relies on environmental sources to meet its purine requirements.[14]
Characteristics
Korarchaeota are a phylum under the Archaea domain and therefore exhibit the archaic characteristics such as having a cell wall without peptidoglycan, as well as lipid membranes that are ether-linked.[15] They have a surface layer of paracrystalline protein.[16] This surface layer, known as the S-layer, is densely packed and consists of 1-2 proteins form various lattice structures and are most likely what maintains the cells’ structural integrity.[15][16] They are typically rod-shaped, however, it has been found that this morphology can change to be thicker-shaped in the presence of higher sodium dodecyl sulfate (SDS) concentrations.[17] Korarchaeota cells have an ultrathin filamentous morphology that may vary in length.[5] They typically average 15 μm in length and 0.16 μm in diameter but can be seen up to 100 μm long.[17] Some Archaea can fix carbon dioxide through the 3-hydroxypropionate/4-hydroxybutyrate pathway into organic compounds[18]
Ecology
Korarcheota have only been found in hydrothermal environments ranging from terrestrial, including hot springs [5][19] to marine, including shallow hydrothermal vents and deep-sea hydrothermal vents.[20] Previous research has shown greater diversity of Korarchaea found in terrestrial hot springs compared to marine environments.[20] Korarchaeota have been found in nature in only low abundance.[21][22][23] Korarcheota likely originated in marine environments and then adapted to terrestrial ones.[24]
Geographically, Korarcheota have been found in a variety of locations around the world including Japan, Yellowstone National Park, the Gulf of California, Iceland and Russia.[15][20]
Korarchaeota are thermophiles, having been found living in conditions of up to 128 degrees Celsius.[20] The lowest temperature they have been found in is 52 degrees Celsius.[15] While they have frequently been observed living in acidic conditions, they have also been found living in conditions up to a pH of 10.[25][20]
Researchers have identified a virus that can potentially infect Korarcheota.[26]

See also
References
- Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy
- Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota
- See the NCBI webpage on Korarchaeota. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information. Retrieved 2007-03-19.
- Elkins, JG; Podar, M; Graham, DE; et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proc. Natl. Acad. Sci. U.S.A. 105 (23): 8102–7. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
- Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Céline; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil (2008-06-10). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences. 105 (23): 8102–8107. doi:10.1073/pnas.0801980105. ISSN 0027-8424. PMC 2430366. PMID 18535141.
- Liu, Yang; Li, Meng (June 2022). "The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea". mLife. 1 (2): 218–222. doi:10.1002/mlf2.12020. ISSN 2770-100X.
- Barns, S M; Fundyga, R E; Jeffries, M W; Pace, N R (March 1994). "Remarkable archaeal diversity detected in aYellowstone National Park hot spring environment". Proceedings of the National Academy of Sciences. 91 (5): 1609–1613. doi:10.1073/pnas.91.5.1609. ISSN 0027-8424. PMC 43212. PMID 7510403.
- Barns, Susan M; Delwiche, Charles F; Palmer, Jeffrey D; Pace, Norman R (1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". PNAS. 93: 9188–9193.
- Schoch, Conrad L; Ciufo, Stacy; Domrachev, Mikhail; Hotton, Carol L; Kannan, Sivakumar; Khovanskaya, Rogneda; Leipe, Detlef; Mcveigh, Richard; O’Neill, Kathleen; Robbertse, Barbara; Sharma, Shobha; Soussov, Vladimir; Sullivan, John P; Sun, Lu; Turner, Seán (2020-01-01). "NCBI Taxonomy: a comprehensive update on curation, resources and tools". Database. 2020: baaa062. doi:10.1093/database/baaa062. ISSN 1758-0463. PMC 7408187. PMID 32761142.
- Schoch, Conrad L.; Ciufo, Stacy; Domrachev, Mikhail; Hotton, Carol L.; Kannan, Sivakumar; Khovanskaya, Rogneda; Leipe, Detlef; Mcveigh, Richard; O'Neill, Kathleen; Robbertse, Barbara; Sharma, Shobha; Soussov, Vladimir; Sullivan, John P.; Sun, Lu; Turner, Seán (2020-01-01). "NCBI Taxonomy: a comprehensive update on curation, resources and tools". Database: The Journal of Biological Databases and Curation. 2020: baaa062. doi:10.1093/database/baaa062. ISSN 1758-0463. PMC 7408187. PMID 32761142.
- McKay, Luke J.; Dlakić, Mensur; Fields, Matthew W.; Delmont, Tom O.; Eren, A. Murat; Jay, Zackary J.; Klingelsmith, Korinne B.; Rusch, Douglas B.; Inskeep, William P. (April 2019). "Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota". Nature Microbiology. 4 (4): 614–622. doi:10.1038/s41564-019-0362-4. ISSN 2058-5276.
- Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proc. Natl. Acad. Sci. USA. 93 (17): 9188–93. Bibcode:1996PNAS...93.9188B. doi:10.1073/pnas.93.17.9188. PMC 38617. PMID 8799176.
- Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (July 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proc. Natl. Acad. Sci. USA. 105 (1): 8805–6. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
- Brown, Anne M.; Hoopes, Samantha L.; White, Robert H.; Sarisky, Catherine A. (2011-12-14). "Purine biosynthesis in archaea: variations on a theme". Biology Direct. 6: 63. doi:10.1186/1745-6150-6-63. ISSN 1745-6150. PMC 3261824. PMID 22168471.
- Miller, Robin Lea (2008-01-01). "Diversity, biogeography, and geochemical habitat of Korarchaeota in continental hot springs". UNLV Retrospective Theses & Dissertations. doi:10.25669/6h98-vit6.
- Rodrigues-Oliveira, Thiago; Belmok, Aline; Vasconcellos, Deborah; Schuster, Bernhard; Kyaw, Cynthia M. (2017). "Archaeal S-Layers: Overview and Current State of the Art". Frontiers in Microbiology. 8. doi:10.3389/fmicb.2017.02597. ISSN 1664-302X. PMC 5744192. PMID 29312266.
- Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O. (2007-05-01). "The Korarchaeota: Archaeal orphans representing an ancestral lineage of life". doi:10.2172/960397.
{{cite journal}}
: Cite journal requires|journal=
(help) - Berg, Ivan A.; Kockelkorn, Daniel; Buckel, Wolfgang; Fuchs, Georg (2007-12-14). "A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea". Science. 318 (5857): 1782–1786. doi:10.1126/science.1149976. ISSN 0036-8075.
- Takai, Ken; Yoshihiko, Sako (1 February 1999). "A molecular view of archaeal diversity in marine and terrestrial hot water environments". Microbiology Ecology. 28 (2): 177–188.
- Reigstad, Laila Johanne; Jorgensen, Steffen Leth; Schleper, Christa (March 2010). "Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka". The ISME Journal. 4 (3): 346–356. doi:10.1038/ismej.2009.126. ISSN 1751-7370.
- Auchtung TA, Shyndriayeva G, Cavanaugh CM (2011). "16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia". Extremophiles. 15 (1): 105–116. doi:10.1007/s00792-010-0340-5. PMID 21153671. S2CID 12091232.
- Reigstad LJ, Jorgensen SL, Schleper C (2010). "Diversity is and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka jamaica". ISME J. 4 (3): 346–56. doi:10.1038/ismej.2009.126. PMID 19956276.
- Auchtung, Thomas Andrew (2007). Ecology of the hydrothermal candidate archaeal division, Korarchaeota (PhD thesis). Harvard University.
- Miller-Coleman, Robin L.; Dodsworth, Jeremy A.; Ross, Christian A.; Shock, Everett L.; Williams, Amanda J.; Hartnett, Hilairy E.; McDonald, Austin I.; Havig, Jeff R.; Hedlund, Brian P. (2012-05-04). Mormile, Melanie R. (ed.). "Korarchaeota Diversity, Biogeography, and Abundance in Yellowstone and Great Basin Hot Springs and Ecological Niche Modeling Based on Machine Learning". PLoS ONE. 7 (5): e35964. doi:10.1371/journal.pone.0035964. ISSN 1932-6203. PMC 3344838. PMID 22574130.
- Marteinsson, Viggó Thór; Kristjánsson, Jakob K.; Kristmannsdóttir, Hrefna; Dahlkvist, Maria; Sæmundsson, Kristján; Hannington, Mark; Pétursdóttir, Sólveig K.; Geptner, Alfred; Stoffers, Peter (February 2001). "Discovery and Description of Giant Submarine Smectite Cones on the Seafloor in Eyjafjordur, Northern Iceland, and a Novel Thermal Microbial Habitat". Applied and Environmental Microbiology. 67 (2): 827–833. doi:10.1128/AEM.67.2.827-833.2001. ISSN 0099-2240. PMC 92654. PMID 11157250.
- Liu, Ying; Brandt, David; Ishino, Sonoko; Ishino, Yoshizumi; Koonin, Eugene V.; Kalinowski, Jörn; Krupovic, Mart; Prangishvili, David (June 2019). "New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures". Environmental Microbiology. 21 (6): 2002–2014. doi:10.1111/1462-2920.14479. ISSN 1462-2912.
Further reading
Scientific journals
- Stackebrandt, E; Frederiksen W; Garrity GM; Grimont PA; Kampfer P; Maiden MC; Nesme X; Rossello-Mora R; Swings J; Truper HG; Vauterin L; Ward AC; Whitman WB (2002). "Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology". Int. J. Syst. Evol. Microbiol. 52 (Pt 3): 1043–1047. doi:10.1099/ijs.0.02360-0. PMID 12054223.
- Gurtler, V; Mayall BC (2001). "Genomic approaches to typing, taxonomy and evolution of bacterial isolates". Int. J. Syst. Evol. Microbiol. 51 (Pt 1): 3–16. doi:10.1099/00207713-51-1-3. PMID 11211268.
- Dalevi, D; Hugenholtz P; Blackall LL (2001). "A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data". Int. J. Syst. Evol. Microbiol. 51 (Pt 2): 385–391. doi:10.1099/00207713-51-2-385. PMID 11321083.
- Keswani, J; Whitman WB (2001). "Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes". Int. J. Syst. Evol. Microbiol. 51 (Pt 2): 667–678. doi:10.1099/00207713-51-2-667. PMID 11321113.
- Young, JM (2001). "Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy". Int. J. Syst. Evol. Microbiol. 51 (Pt 3): 945–953. doi:10.1099/00207713-51-3-945. PMID 11411719.
- Christensen, H; Bisgaard M; Frederiksen W; Mutters R; Kuhnert P; Olsen JE (2001). "Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision)". Int. J. Syst. Evol. Microbiol. 51 (Pt 6): 2221–2225. doi:10.1099/00207713-51-6-2221. PMID 11760965.
- Christensen, H; Angen O; Mutters R; Olsen JE; Bisgaard M (2000). "DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA". Int. J. Syst. Evol. Microbiol. 50 (3): 1095–1102. doi:10.1099/00207713-50-3-1095. PMID 10843050.
- Xu, HX; Kawamura Y; Li N; Zhao L; Li TM; Li ZY; Shu S; Ezaki T (2000). "A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube". Int. J. Syst. Evol. Microbiol. 50 (4): 1463–1469. doi:10.1099/00207713-50-4-1463. PMID 10939651.
- Young, JM (2000). "Suggestions for avoiding on-going confusion from the Bacteriological Code". Int. J. Syst. Evol. Microbiol. 50 (4): 1687–1689. doi:10.1099/00207713-50-4-1687. PMID 10939677.
- Hansmann, S; Martin W (2000). "Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis". Int. J. Syst. Evol. Microbiol. 50 (4): 1655–1663. doi:10.1099/00207713-50-4-1655. PMID 10939673.
- Tindall, BJ (1999). "Proposal to change the Rule governing the designation of type strains deposited under culture collection numbers allocated for patent purposes". Int. J. Syst. Bacteriol. 49 (3): 1317–1319. doi:10.1099/00207713-49-3-1317. PMID 10490293.
- Tindall, BJ (1999). "Proposal to change Rule 18a, Rule 18f and Rule 30 to limit the retroactive consequences of changes accepted by the ICSB". Int. J. Syst. Bacteriol. 49 (3): 1321–1322. doi:10.1099/00207713-49-3-1321. PMID 10425797.
- Tindall, BJ (1999). "Misunderstanding the Bacteriological Code". Int. J. Syst. Bacteriol. 49 (3): 1313–1316. doi:10.1099/00207713-49-3-1313. PMID 10425796.
- Tindall, BJ (1999). "Proposals to update and make changes to the Bacteriological Code". Int. J. Syst. Bacteriol. 49 (3): 1309–1312. doi:10.1099/00207713-49-3-1309. PMID 10425795.
- Palys, T; Nakamura LK; Cohan FM (1997). "Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data". Int. J. Syst. Bacteriol. 47 (4): 1145–1156. doi:10.1099/00207713-47-4-1145. PMID 9336922.
- Euzeby, JP (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int. J. Syst. Bacteriol. 47 (2): 590–592. doi:10.1099/00207713-47-2-590. PMID 9103655.
- Burggraf, S; Heyder P; Eis N (1997). "A pivotal Archaea group". Nature. 385 (6619): 780. Bibcode:1997Natur.385..780B. doi:10.1038/385780a0. PMID 9039908. S2CID 4357113.
- Barns, SM; Delwiche CF; Palmer JD; Pace NR (1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proc. Natl. Acad. Sci. USA. 93 (17): 9188–9193. Bibcode:1996PNAS...93.9188B. doi:10.1073/pnas.93.17.9188. PMC 38617. PMID 8799176.
- Clayton, RA; Sutton G; Hinkle PS Jr; Bult C; Fields C (1995). "Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa". Int. J. Syst. Bacteriol. 45 (3): 595–599. doi:10.1099/00207713-45-3-595. PMID 8590690.
- Barns, SM; Fundyga RE; Jeffries MW; Pace NR (1994). "Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment". Proc. Natl. Acad. Sci. USA. 91 (5): 1609–1613. Bibcode:1994PNAS...91.1609B. doi:10.1073/pnas.91.5.1609. PMC 43212. PMID 7510403.
- Murray, RG; Schleifer KH (1994). "Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes". Int. J. Syst. Bacteriol. 44 (1): 174–176. doi:10.1099/00207713-44-1-174. PMID 8123559.
- Winker, S; Woese CR (1991). "A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics". Syst. Appl. Microbiol. 14 (4): 305–310. doi:10.1016/s0723-2020(11)80303-6. PMID 11540071.
- Woese, CR; Kandler O; Wheelis ML (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc. Natl. Acad. Sci. USA. 87 (12): 4576–4579. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744.
- Achenbach-Richter, L; Woese CR (1988). "The ribosomal gene spacer region in archaebacteria". Syst. Appl. Microbiol. 10 (3): 211–214. doi:10.1016/s0723-2020(88)80002-x. PMID 11542149.
- McGill, TJ; Jurka J; Sobieski JM; Pickett MH; Woese CR; Fox GE (1986). "Characteristic archaebacterial 16S rRNA oligonucleotides". Syst. Appl. Microbiol. 7 (2–3): 194–197. doi:10.1016/S0723-2020(86)80005-4. PMID 11542064.
- Woese, CR; Olsen GJ (1984). "The phylogenetic relationships of three sulfur dependent archaebacteria". Syst. Appl. Microbiol. 5: 97–105. doi:10.1016/S0723-2020(84)80054-5. PMID 11541975.
- Woese, CR; Fox GE (1977). "Phylogenetic structure of the prokaryotic domain: the primary kingdoms". Proc. Natl. Acad. Sci. USA. 74 (11): 5088–5090. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. PMC 432104. PMID 270744.
External links
- NCBI taxonomy page for Korarchaeota
- Search Tree of Life taxonomy pages for Korarchaeota
- Search Species2000 page for Korarchaeota
- MicrobeWiki page for Korarchaeota
- LPSN page for Korarchaeota