Korarchaeota

In taxonomy, the Korarchaeota are a phylum of the Archaea.[3] The name is derived from the Greek noun koros or kore, meaning young man or young woman, and the Greek adjective archaios which means ancient.[4] They are also known as Xenarchaeota. The name is equivalent to Candidatus Korarchaeota, and they go by the name Xenarchaeota or Xenarchaea as well (Garrity & Holt, 2001).

Korarchaeota
Scanning electron micrograph of the Obsidian Pool enrichment culture, showing Korarchaeota.
Scientific classification
Domain:
Kingdom:
Superphylum:
Phylum:
"Korarchaeota"

Barns et al. 1996
Class:
"Korarchaeia"

Rinke et al. 2020[1]
Order:
"Korarchaeales"

Petitjean et al. 2015[2]
Family:
"Korarchaeaceae"

Rinke et al. 2020
Species
  • "Ca. Korarchaeum"
  • "Ca. Methanodesulfokores"
Synonyms
  • "Xenarchaea"
  • "Xenarchaeota"

Taxonomy

The Korarchaeota are a phylum of the kingdom, Archaea.[5] They are thought to be a phylum that diverged relatively early in the genesis of Archaea among the deep-branching lineages.[5] Korarchaeaota, along with Thaumarchaeota, Aigarchaeota, Crenarchaeota, belong to the TACK superphylum.[6]

Three-domain analyses of obsidian pool sequences have shown that the rDNA sequences of clones pJP27 and pJP78, have about as many signature features in common with Euryarchaeota as with Crenarchaeota (8 vs.6 features).[7][8] This suggests that these lineages branch is not either of the two groups but divergent from them and evolve in a rapid way.

Species

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI).

Listed below are the known species of Korarcheota[9] Candidatus Korarchaeota

  • Genus Candidatus Korarchaeota archaeon[10]  
  • Genus Candidatus Korarchaeota archaeon NZ13-K[10]  
  • Genus Candidatus Korarchaeum[5]  
    • Species Candidatus Korarchaeum cryptofilum[5]
      • Candidatus Korarchaeum cryptofilum OPF8[5]
  • Genus Candidatus Methanodesulfokores[11]  
    • Species Candidatus Methanodesulfokores washburnensis[11]  
  • Genus Korarchaeote SRI-306 [10]  
  • Genus environmental samples[10]  
    • uncultured korarchaeote pBA5[10]  
    • uncultured korarchaeote pJP27[10]  
    • uncultured korarchaeote pJP78[10]

Phylogeny

Analysis of their 16S rRNA gene sequences suggests that they are a deeply branching lineage that does not belong to the main archaeal groups, Thermoproteota and Euryarchaeota.[12] Analysis of the genome of one korarchaeote that was enriched from a mixed culture revealed a number of both Crenarchaeota- and Euryarchaeota-like features and supports the hypothesis of a deep-branching ancestry.[13]

Reference species

The strain Korarchaeum cryptofilum was cultivated in an enrichment culture from a hot spring in Yellowstone National Park in USA 2008.[13] The cells are long and needleshaped, which gave the species its name, alluding to its "cryptical filaments". This organism lacks the genes for purine nucleotide biosynthesis and thus relies on environmental sources to meet its purine requirements.[14]

Characteristics

Korarchaeota are a phylum under the Archaea domain and therefore exhibit the archaic characteristics such as having a cell wall without peptidoglycan, as well as lipid membranes that are ether-linked.[15] They have a surface layer of paracrystalline protein.[16] This surface layer, known as the S-layer, is densely packed and consists of 1-2 proteins form various lattice structures and are most likely what maintains the cells’ structural integrity.[15][16] They are typically rod-shaped, however, it has been found that this morphology can change to be thicker-shaped in the presence of higher sodium dodecyl sulfate (SDS) concentrations.[17] Korarchaeota cells have an ultrathin filamentous morphology that may vary in length.[5] They typically average 15 μm in length and 0.16 μm in diameter but can be seen up to 100 μm long.[17] Some Archaea can fix carbon dioxide through the 3-hydroxypropionate/4-hydroxybutyrate pathway into organic compounds[18]

Ecology

Korarcheota have only been found in hydrothermal environments ranging from terrestrial, including hot springs [5][19] to marine, including shallow hydrothermal vents and deep-sea hydrothermal vents.[20] Previous research has shown greater diversity of Korarchaea found in terrestrial hot springs compared to marine environments.[20] Korarchaeota have been found in nature in only low abundance.[21][22][23] Korarcheota likely originated in marine environments and then adapted to terrestrial ones.[24]

Geographically, Korarcheota have been found in a variety of locations around the world including Japan, Yellowstone National Park, the Gulf of California, Iceland and Russia.[15][20]

Korarchaeota are thermophiles, having been found living in conditions of up to 128 degrees Celsius.[20] The lowest temperature they have been found in is 52 degrees Celsius.[15] While they have frequently been observed living in acidic conditions, they have also been found living in conditions up to a pH of 10.[25][20]

Researchers have identified a virus that can potentially infect Korarcheota.[26]

Each of these six hot springs (from top left, clockwise: Uzon4, Uzon7, Uzon8, Uzon9, Mut11, Mut13) in Kamchatka were found to contain Korarchaeota.
Each of these six hot springs (clockwise from top left: Uzon4, Uzon7, Uzon8, Uzon9, Mut11, Mut13) in Kamchatka was found to contain Korarchaeota.[21]

See also

References

  1. Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy
  2. Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota
  3. See the NCBI webpage on Korarchaeota. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information. Retrieved 2007-03-19.
  4. Elkins, JG; Podar, M; Graham, DE; et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proc. Natl. Acad. Sci. U.S.A. 105 (23): 8102–7. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
  5. Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Céline; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil (2008-06-10). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences. 105 (23): 8102–8107. doi:10.1073/pnas.0801980105. ISSN 0027-8424. PMC 2430366. PMID 18535141.
  6. Liu, Yang; Li, Meng (June 2022). "The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea". mLife. 1 (2): 218–222. doi:10.1002/mlf2.12020. ISSN 2770-100X.
  7. Barns, S M; Fundyga, R E; Jeffries, M W; Pace, N R (March 1994). "Remarkable archaeal diversity detected in aYellowstone National Park hot spring environment". Proceedings of the National Academy of Sciences. 91 (5): 1609–1613. doi:10.1073/pnas.91.5.1609. ISSN 0027-8424. PMC 43212. PMID 7510403.
  8. Barns, Susan M; Delwiche, Charles F; Palmer, Jeffrey D; Pace, Norman R (1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". PNAS. 93: 9188–9193.
  9. Schoch, Conrad L; Ciufo, Stacy; Domrachev, Mikhail; Hotton, Carol L; Kannan, Sivakumar; Khovanskaya, Rogneda; Leipe, Detlef; Mcveigh, Richard; O’Neill, Kathleen; Robbertse, Barbara; Sharma, Shobha; Soussov, Vladimir; Sullivan, John P; Sun, Lu; Turner, Seán (2020-01-01). "NCBI Taxonomy: a comprehensive update on curation, resources and tools". Database. 2020: baaa062. doi:10.1093/database/baaa062. ISSN 1758-0463. PMC 7408187. PMID 32761142.
  10. Schoch, Conrad L.; Ciufo, Stacy; Domrachev, Mikhail; Hotton, Carol L.; Kannan, Sivakumar; Khovanskaya, Rogneda; Leipe, Detlef; Mcveigh, Richard; O'Neill, Kathleen; Robbertse, Barbara; Sharma, Shobha; Soussov, Vladimir; Sullivan, John P.; Sun, Lu; Turner, Seán (2020-01-01). "NCBI Taxonomy: a comprehensive update on curation, resources and tools". Database: The Journal of Biological Databases and Curation. 2020: baaa062. doi:10.1093/database/baaa062. ISSN 1758-0463. PMC 7408187. PMID 32761142.
  11. McKay, Luke J.; Dlakić, Mensur; Fields, Matthew W.; Delmont, Tom O.; Eren, A. Murat; Jay, Zackary J.; Klingelsmith, Korinne B.; Rusch, Douglas B.; Inskeep, William P. (April 2019). "Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota". Nature Microbiology. 4 (4): 614–622. doi:10.1038/s41564-019-0362-4. ISSN 2058-5276.
  12. Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proc. Natl. Acad. Sci. USA. 93 (17): 9188–93. Bibcode:1996PNAS...93.9188B. doi:10.1073/pnas.93.17.9188. PMC 38617. PMID 8799176.
  13. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (July 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proc. Natl. Acad. Sci. USA. 105 (1): 8805–6. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
  14. Brown, Anne M.; Hoopes, Samantha L.; White, Robert H.; Sarisky, Catherine A. (2011-12-14). "Purine biosynthesis in archaea: variations on a theme". Biology Direct. 6: 63. doi:10.1186/1745-6150-6-63. ISSN 1745-6150. PMC 3261824. PMID 22168471.
  15. Miller, Robin Lea (2008-01-01). "Diversity, biogeography, and geochemical habitat of Korarchaeota in continental hot springs". UNLV Retrospective Theses & Dissertations. doi:10.25669/6h98-vit6.
  16. Rodrigues-Oliveira, Thiago; Belmok, Aline; Vasconcellos, Deborah; Schuster, Bernhard; Kyaw, Cynthia M. (2017). "Archaeal S-Layers: Overview and Current State of the Art". Frontiers in Microbiology. 8. doi:10.3389/fmicb.2017.02597. ISSN 1664-302X. PMC 5744192. PMID 29312266.
  17. Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O. (2007-05-01). "The Korarchaeota: Archaeal orphans representing an ancestral lineage of life". doi:10.2172/960397. {{cite journal}}: Cite journal requires |journal= (help)
  18. Berg, Ivan A.; Kockelkorn, Daniel; Buckel, Wolfgang; Fuchs, Georg (2007-12-14). "A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea". Science. 318 (5857): 1782–1786. doi:10.1126/science.1149976. ISSN 0036-8075.
  19. Takai, Ken; Yoshihiko, Sako (1 February 1999). "A molecular view of archaeal diversity in marine and terrestrial hot water environments". Microbiology Ecology. 28 (2): 177–188.
  20. Reigstad, Laila Johanne; Jorgensen, Steffen Leth; Schleper, Christa (March 2010). "Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka". The ISME Journal. 4 (3): 346–356. doi:10.1038/ismej.2009.126. ISSN 1751-7370.
  21. Auchtung TA, Shyndriayeva G, Cavanaugh CM (2011). "16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia". Extremophiles. 15 (1): 105–116. doi:10.1007/s00792-010-0340-5. PMID 21153671. S2CID 12091232.
  22. Reigstad LJ, Jorgensen SL, Schleper C (2010). "Diversity is and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka jamaica". ISME J. 4 (3): 346–56. doi:10.1038/ismej.2009.126. PMID 19956276.
  23. Auchtung, Thomas Andrew (2007). Ecology of the hydrothermal candidate archaeal division, Korarchaeota (PhD thesis). Harvard University.
  24. Miller-Coleman, Robin L.; Dodsworth, Jeremy A.; Ross, Christian A.; Shock, Everett L.; Williams, Amanda J.; Hartnett, Hilairy E.; McDonald, Austin I.; Havig, Jeff R.; Hedlund, Brian P. (2012-05-04). Mormile, Melanie R. (ed.). "Korarchaeota Diversity, Biogeography, and Abundance in Yellowstone and Great Basin Hot Springs and Ecological Niche Modeling Based on Machine Learning". PLoS ONE. 7 (5): e35964. doi:10.1371/journal.pone.0035964. ISSN 1932-6203. PMC 3344838. PMID 22574130.
  25. Marteinsson, Viggó Thór; Kristjánsson, Jakob K.; Kristmannsdóttir, Hrefna; Dahlkvist, Maria; Sæmundsson, Kristján; Hannington, Mark; Pétursdóttir, Sólveig K.; Geptner, Alfred; Stoffers, Peter (February 2001). "Discovery and Description of Giant Submarine Smectite Cones on the Seafloor in Eyjafjordur, Northern Iceland, and a Novel Thermal Microbial Habitat". Applied and Environmental Microbiology. 67 (2): 827–833. doi:10.1128/AEM.67.2.827-833.2001. ISSN 0099-2240. PMC 92654. PMID 11157250.
  26. Liu, Ying; Brandt, David; Ishino, Sonoko; Ishino, Yoshizumi; Koonin, Eugene V.; Kalinowski, Jörn; Krupovic, Mart; Prangishvili, David (June 2019). "New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures". Environmental Microbiology. 21 (6): 2002–2014. doi:10.1111/1462-2920.14479. ISSN 1462-2912.

Further reading

Scientific journals

Scientific databases

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.