Overring
In mathematics, an overring of an integral domain contains the integral domain, and the overring itself is contained in a field called the field of fractions. Overrings provide an improved understanding of different types of rings and domains.
Algebraic structure → Ring theory Ring theory |
---|
![]() |
Definition
In this article, all rings are commutative rings, and ring and overring share the same identity element.
Let represent the field of fractions of an integral domain . Ring is an overring of integral domain if is a subring of and is a subring of the field of fractions ;[1]: 167 the relationship is .[2]: 373
Properties
Ring of fractions
The rings are the rings of fractions of rings by multiplicative set .[3]: 46 Assume is an overring of and is a multiplicative set in . The ring is an overring of . The ring is the total ring of fractions of if every nonunit element of is a zero-divisor.[4]: 52–53 Every overring of contained in is a ring , and is an overring of .[4]: 52–53 Ring is integrally closed in if is integrally closed in .[4]: 52–53
Definitions
A Noetherian ring satisfies the 3 equivalent finitenss conditions i) every ascending chain of ideals is finite, ii) every non-empty family of ideals has a maximal element and iii) every ideal has a finite basis.[3]: 199
An integral domain is a Dedekind domain if every ideal of the domain is a finite product of prime ideals.[3]: 270
A ring's restricted dimension is the maximum rank among the ranks of all prime ideals that contain a regular element.[4]: 52
A ring is locally nilpotentfree if every ring with maximal ideal is free of nilpotent elements or a ring with every nonunit a zero divisor.[4]: 52
An affine ring is the homomorphic image of a polynomial ring over a field.[4]: 58
Properties
Every overring of a Dedekind ring is a Dedekind ring.[5][6]
Every overrring of a direct sum of rings whose non-unit elements are all zero-divisors is a Noetherian ring.[4]: 53
Every overring of a Krull 1-dimensional Noetherian domain is a Noetherian ring.[4]: 53
These statements are equivalent for Noetherian ring with integral closure .[4]: 57
- Every overring of is a Noetherian ring.
- For each maximal ideal of , every overring of is a Noetherian ring.
- Ring is locally nilpotentfree with restricted dimension 1 or less.
- Ring is Noetherian, and ring has restricted dimension 1 or less.
- Every overring of is integrally closed.
These statements are equivalent for affine ring with integral closure .[4]: 58
- Ring is locally nilpotentfree.
- Ring is a finite module.
- Ring is Noetherian.
An integrally closed local ring is an integral domain or a ring whose non-unit elements are all zero-divisors.[4]: 58
A Noetherian integral domain is a Dedekind ring if every overring of the Noetherian ring is integrally closed.[7]: 198
Every overring of a Noetherian integral domain is a ring of fractions if the Noetherian integral domain is a Dedekind ring with a torsion class group.[7]: 200
Definitions
A coherent ring is a commutative ring with each finitely generated ideal finitely presented.[2]: 373 Noetherian domains and Prüfer domains are coherent.[8]: 137
A pair indicates a integral domain extension of over .[9]: 331
Ring is an intermediate domain for pair if is a subdomain of and is a subdomain of .[9]: 331
Properties
A Noetherian ring's Krull dimension is 1 or less if every overring is coherent.[2]: 373
For integral domain pair , is an overring of if each intermediate integral domain is integrally closed in .[9]: 332 [10]: 175
The integral closure of is a Prüfer domain if each proper overring of is coherent.[8]: 137
The overrings of Prüfer domains and Krull 1-dimensional Noetherian domains are coherent.[8]: 138
Properties
A ring has QR property if every overring is a localization with a multiplicative set.[11]: 196 The QR domains are Prüfer domains.[11]: 196 A Prüfer domain with a torsion Picard group is a QR domain.[11]: 196 A Prüfer domain is a QR domain if the radical of every finitely generated ideal equals the radical generated by a principal ideal.[12]: 500
The statement is a Prüfer domain is equivalent to:[13]: 56
- Each overring of is the intersection of localizations of , and is integrally closed.
- Each overring of is the intersection of rings of fractions of , and is integrally closed.
- Each overring of has prime ideals that are extensions of the prime ideals of , and is integrally closed.
- Each overring of has at most 1 prime ideal lying over any prime ideal of , and is integrally closed
- Each overring of is integrally closed.
- Each overring of is coherent.
The statement is a Prüfer domain is equivalent to:[1]: 167
- Each overring of is flat as a module.
- Each valuation overring of is a ring of fractions.
Definitions
A minimal ring homomorphism is an injective non-surjective homomorophism, and if the homomorphism is a composition of homomorphisms and then or is an isomorphism.[14]: 461
A proper minimal ring extension of subring occurs if the ring inclusion of in to is a minimal ring homomorphism. This implies the ring pair has no proper intermediate ring.[15]: 186
A minimal overring of ring occurs if contains as a subring, and the ring pair has no proper intermediate ring.[16]: 60
The Kaplansky ideal transform (Hayes transform, S-transform) of ideal with respect to integral domain is a subset of the fraction field . This subset contains elements such that for each element of the ideal there is a positive integer with the product contained in integral domain .[17][16]: 60
Properties
Any domain generated from a minimal ring extension of domain is an overring of if is not a field.[17][15]: 186
The field of fractions of contains minimal overring of when is not a field.[16]: 60
Assume an integrally closed integral domain is not a field, If a minimal overring of integral domain exists, this minimal overring occurs as the Kaplansky transform of a maximal ideal of .[16]: 60
Examples
The Bézout integral domain is a type of Prüfer domain; the Bézout domain's defining property is every finitely generated ideal is a principal ideal. The Bézout domain will share all the overring properties of a Prüfer domain.[1]: 168
The integer ring is a Prüfer ring, and all overrings are rings of quotients.[7]: 196 The dyadic rational is a fraction with an integer numerator and power of 2 denominators. The dyadic rational ring is the localization of the integers by powers of two and an overring of the integer ring.
Notes
- Fontana & Papick 2002.
- Papick 1978.
- Zariski & Samuel 1965.
- Davis 1962.
- Cohen 1950.
- Lane & Schilling 1939.
- Davis 1964.
- Papick 1980.
- Papick 1979.
- Davis 1973.
- Fuchs, Heinzer & Olberding 2004.
- Pendleton 1966.
- Bazzoni & Glaz 2006.
- Ferrand & Olivier 1970.
- Dobbs & Shapiro 2006.
- Dobbs & Shapiro 2007.
- Sato, Sugatani & Yoshida 1992.
References
- Atiyah, Michael Francis; Macdonald, Ian G. (1969). Introduction to commutative algebra. Reading, Mass.: Addison-Wesley Publishing Company. ISBN 9780201407518.
- Bazzoni, Silvana; Glaz, Sarah (2006). "Prüfer rings". In Brewer rings, James W.; Glaz, Sarah; Heinzer, William J.; Olberding, Bruce M. (eds.). Multiplicative ideal theory in commutative algebra: a tribute to the work of Robert Gilmer. New York, NY: Springer. pp. 54–72. ISBN 978-0-387-24600-0.
- Cohen, Irving S. (1950). "Commutative rings with restricted minimum condition". Duke Math. J. 17 (1): 27–42. doi:10.1215/S0012-7094-50-01704-2.
- Davis, Edward D (1962). "Overrings of commutative rings. I. Noetherian overrings" (PDF). Transactions of the American Mathematical Society. 104 (1): 52–61.
- Davis, Edward D (1964). "Overrings of commutative rings. II. Integrally closed overrings" (PDF). Transactions of the American Mathematical Society. 110 (2): 196–212.
- Davis, Edward D. (1973). "Overrings of commutative rings. III. Normal pairs" (PDF). Transactions of the American Mathematical Society: 175–185.
- Dobbs, David E.; Shapiro, Jay (2006). "A classification of the minimal ring extensions of an integral domain" (PDF). Journal of Algebra. 305 (1): 185–193. doi:10.1016/j.jalgebra.2005.10.005.
- Dobbs, David E.; Shapiro, Jay (2007). "Descent of minimal overrings of integrally closed domains to fixed rings". Houston Journal of Mathematics. 33 (1).
- Ferrand, Daniel; Olivier, Jean-Pierre (1970). "Homomorphismes minimaux d'anneaux" (PDF). Journal of Algebra. 16 (3): 461–471.
- Fontana, Marco; Papick, Ira J. (2002), "Dedekind and Prüfer domains", in Mikhalev, Alexander V.; Pilz, Günter F. (eds.), The concise handbook of algebra, Kluwer Academic Publishers, Dordrecht, pp. 165–168, ISBN 9780792370727
- Fuchs, Laszlo; Heinzer, William; Olberding, Bruce (2004), "Maximal prime divisors in arithmetical rings", Rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math., vol. 236, Dekker, New York, pp. 189–203, MR 2050712
- Lane, Saunders Mac; Schilling, O. F. G. (1939). "Infinite number fields with Noether ideal theories". American Journal of Mathematics. 61 (3): 771–782.
- Papick, Ira J. (1978). "A Remark on Coherent Overrings" (PDF). Canad. Math. Bull. 21 (3): 373–375.
- Papick, Ira J. (1979). "Coherent overrings" (PDF). Canadian Mathematical Bulletin. 22 (3): 331–337.
- Papick, Ira J. (1980). "A note on proper overrings". Rikkyo Daigaku sugaku zasshi. 28 (2): 137–140.
- Pendleton, Robert L. (1966). "A characterization of Q-domains". Bull. Amer. Math. Soc. 72 (4): 499–500.
- Sato, Junro; Sugatani, Takasi; Yoshida, Ken-ichi (January 1992). "On minimal overrings of a noetherian domain". Communications in Algebra. 20 (6): 1735–1746. doi:10.1080/00927879208824427.
- Zariski, Oscar; Samuel, Pierre (1965). Commutative algebra. New York: Springer-Verlag. ISBN 978-0-387-90089-6.