Effective topos

In mathematics, the effective topos is a topos introduced by Martin Hyland (1982), based on Kleene's notion of recursive realizability, that captures the idea of effectivity in mathematics.

References

  • Hyland, J. M. E. (1982), "The effective topos" (PDF), in Troelstra, A. S.; Dalen, D. van (eds.), The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), Studies in Logic and the Foundations of Mathematics, vol. 110, Amsterdam: North-Holland, pp. 165–216, doi:10.1016/S0049-237X(09)70129-6, ISBN 978-0-444-86494-9, MR 0717245
  • Kleene, S. C. (1945). "On the interpretation of intuitionistic number theory". Journal of Symbolic Logic. 10 (4): 109–124. doi:10.2307/2269016. JSTOR 2269016.
  • Phoa, Wesley (1992). An introduction to fibrations, topos theory, the effective topos and modest sets (Technical report). Laboratory for Foundations of Computer Science, University of Edinburgh. CiteSeerX 10.1.1.112.4533. ECS-LFCS-92-208.
  • Bernadet, Alexis; Graham-Lengrand, Stéphane (2013). "A simple presentation of the effective topos". arXiv:1307.3832.
  • Corfield, David; Ramesh, Sridhar; Schreiber, Urs; Bartels, Toby; Škoda, Zoran; Shulman, Mike; Trimble, Todd; Roberts, David; Holder, Thomas (January 22, 2023) [July 10, 2009], effective topos (19 ed.), nLab


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.