Connes connection

In mathematics, a Connes connection is a noncommutative generalization of a connection in differential geometry. It was introduced by Alain Connes, and was later generalized by Joachim Cuntz and Daniel Quillen.

Definition

Given a right A-module E, a Connes connection on E is a linear map

that satisfies the Leibniz rule .[1]

See also

References

  1. Vale 2009, Definition 8.1.
  • Connes, Alain (1995). Noncommutative Geometry. Academic Press. ISBN 978-0-08-057175-1.
  • Connes, Alain (1985). "Non-commutative differential geometry". Publications Mathématiques de l'IHÉS. 62: 41–144. ISSN 1618-1913.
  • Cuntz, Joachim; Quillen, Daniel (1995). "Algebra Extensions and Nonsingularity". Journal of the American Mathematical Society. 8 (2): 251–289. doi:10.2307/2152819. ISSN 0894-0347.
  • García-Beltrán, Dennise; a-Beltrán, Dennise; Vallejo, José A.; Vorobjev, Yuriĭ (2012). "On Lie Algebroids and Poisson Algebras". Symmetry, Integrability and Geometry: Methods and Applications. 8: 006. arXiv:1106.1512. Bibcode:2012SIGMA...8..006G. doi:10.3842/SIGMA.2012.006. S2CID 5946411.
  • * Vale, R. (2009). "notes on quasi-free algebras" (PDF).
  • "Connections". Topics in Cyclic Theory. 2020. pp. 201–228. doi:10.1017/9781108855846.009. ISBN 9781108855846.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.