1728 (number)
1728 is the natural number following 1727 and preceding 1729. It is a dozen gross, or one great gross (or grand gross).[1] It is also the number of cubic inches in a cubic foot.
| ||||
---|---|---|---|---|
Cardinal | one thousand seven hundred twenty-eight | |||
Ordinal | 1728th (one thousand seven hundred twenty-eighth) | |||
Factorization | 26 × 33 | |||
Greek numeral | ,ΑΨΚΗ´ | |||
Roman numeral | MDCCXXVIII | |||
Binary | 110110000002 | |||
Ternary | 21010003 | |||
Senary | 120006 | |||
Octal | 33008 | |||
Duodecimal | 100012 | |||
Hexadecimal | 6C016 |
In mathematics
1728 is the cube of 12, and the product of the six divisors of 12 (1, 2, 3, 4, 6, 12).[2][3] Furthermore, it is the product of the first four composite numbers (4, 6, 8, and 9), which makes it the fifth compositorial.[4] Since 1728 is a cubic perfect power,[5] it is also a powerful number n where a prime number p divides n, with p2 also dividing n.[6]
- 1728 = 33 × 43 = 23 × 63 = 63 + 83 + 103 = 123.
- 1728 = 242 + 242 + 242.
- 1728 = 2! × (3!)2 × 4!.[7][8]
It is an abundant and pseudoperfect number, as it is smaller than the sum of its proper divisors yet equal to the sum of a subset of its proper divisors.[9][10]
It is a practical number as each smaller number is the sum of distinct divisors of 1728,[11] and an integer-perfect number where its divisors can be partitioned into two disjoint sets with equal sum.[12]
1728 is also an untouchable number where no other number contains a sum of proper divisors equal to 1728.[13] In decimal, it is a self number that cannot be written as the sum of any other natural number n and the individual digits of n.[14]
Its twenty-eight divisors (1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864, 1728) constitute a perfect count, like 12 (which has six divisors). 1728 has a Euler totient of 576 or 242, which divides 1728 thrice over.[15]
1728 is 3-smooth, since it's only distinct prime factors are 2 and 3.[16] This also makes 1728 a regular number[17] which are most useful in the context of powers of 60, the smallest number with twelve divisors:[18]
- 603 = 216000 = 1728 × 125 = 123 × 53.
1728 is one less than the first taxicab or Hardy–Ramanujan number 1729, which is the smallest number that can be expressed as sums of two positive cubes in two ways.[19]
The number of directed open knight's tours on a 5 × 5 chessboard is 1728.[20]
Many relevant calculations involving 1728 are computed in the duodecimal number system, in-which it is represented as "1000".
Modular j-invariant
1728 occurs in the algebraic formula for the j-invariant of an elliptic curve, as a function over a complex variable on the upper half-plane ,[21]
Inputting a value of for , where is the imaginary number, yields another cubic integer:
In moonshine theory, the first few terms in the Fourier q-expansion of the normalized j-invariant exapand as,[22]
The Griess algebra (which contains the friendly giant as its automorphism group) and all subsequent graded parts of its infinite-dimensional moonshine module hold dimensional representations whose values are the Fourier coefficients in this q-expansion.
In culture
1728 is the number of daily chants of the Hare Krishna mantra by a Hare Krishna devotee. The number comes from 16 rounds on a 108 japamala bead.[23]
See also
- The year 1728 A.D.
References
- "Great gross (noun)". Merriam-Webster Dictionary. Merriam-Webster, Inc. Retrieved 2023-04-04.
- Sloane, N. J. A. (ed.). "Sequence A000578 (The cubes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A007955 (Product of divisors of n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A036691 (Compositorial numbers: product of first n composite numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A001597 (Perfect powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A001694 (Powerful numbers, definition (1): if a prime p divides n then p^2 must also divide n (also called squareful, square full, square-full or 2-powerful numbers).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- "1728". Numbers Aplenty. Retrieved 2023-04-04.
- Sloane, N. J. A. (ed.). "Sequence A001013 (Jordan-Polya numbers: products of factorial numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A005101 (Abundant numbers (sum of divisors of m exceeds 2m).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A005835 (Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A005153 (Practical numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A083207 (Zumkeller or integer-perfect numbers: numbers n whose divisors can be partitioned into two disjoint sets with equal sum.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A003052 (Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A000010 (Euler totient function phi(n): count numbers less than or equal to n and relatively prime to n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-03.
- Sloane, N. J. A. (ed.). "Sequence A003586 (3-smooth numbers: numbers of the form 2^i*3^j with i, j greater than or equal to 0.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-04.
- Sloane, N. J. A. (ed.). "Sequence A051037 (5-smooth numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-04.
- Equivalently, regular numbers.
- Sloane, N. J. A. (ed.). "Sequence A000005 (d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-04.
- Sloane, N. J. A. (ed.). "Sequence A011541 (Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-30.
- Sloane, N. J. A. (ed.). "Sequence A165134 (Number of directed Hamiltonian paths in the n X n knight graph)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-30.
- Berndt, Bruce C.; Chan, Heng Huat (1999). "Ramanujan and the modular j-invariant". Canadian Mathematical Bulletin. 42 (4): 427–440. doi:10.4153/CMB-1999-050-1. MR 1727340. S2CID 1816362.
- John McKay (2001). "The Essentials of Monstrous Moonshine". Groups and Combinatorics: In memory of Michio Suzuki. Adv. Stud. Pure Math. Vol. 32. Tokyo: Mathematical Society of Japan. p. 351. doi:10.2969/aspm/03210347. MR 1893502. S2CID 194379806. Zbl 1015.11012.
- Śrī Dharmavira Prabhu. "Chanting 64 rounds Harināma daily!". Dharmavīra Prahbu. Śrī Gaura Radha Govinda International. Retrieved 2023-03-03.